Volume 8, Issue 4, July 2020, Page: 137-143
Impact of the Conservation of Iroko (Miliciaexcelsa (Welw.) C.C. Berg, Moraceae) on the Fertility of Cocoa-growing Soils in Agroforests of Djèkro (Center-West, Côte d'Ivoire)
Akedrin Tetchi Nicaise, Agricultural Production Improvement Laboratory, UFR of Agroforesterie, Jean Lorougnon Guédé University, Daloa, Côte d’Ivoire
Akotto Odi Faustin, Department of Soil, Water and Geomaterials Sciences, UFR of Earth Sciences and Mineral Resources, Félix Houphouët-Boigny University, Abidjan, Côte d’Ivoire
Kouassi Kouadio Claude, Agricultural Production Improvement Laboratory, UFR of Agroforesterie, Jean Lorougnon Guédé University, Daloa, Côte d’Ivoire
Received: Jun. 22, 2020;       Accepted: Jul. 14, 2020;       Published: Jul. 28, 2020
DOI: 10.11648/j.ajaf.20200804.17      View  205      Downloads  89
Abstract
The present study aims to determine the spatial gradient of organic matter in soil-litter mixtures as a function of the distance to iroko associated with cocoa trees. The demonstration of the preservation of iroko is carried out thanks to a floristic inventory and a survey ethnobotany from 323 farmers. The fertility of cocoa-growing soils was estimated using spatial organic matter measurement in 12 cocoa plantations of 1,5 to 2 ha associated with iroko. A total of 48 composite litter samples were collected at 20 cm along the spatial gradient of the iroko at distances of 1-2 m, 2-4 m and 4-6,5 m and then in the control (without iroko). With 73% of citation, populations are favorable to its preservation in cocoa agroforests. Prized for its artisanal and medicinal uses, it improves soil fertility outside the shade provided to cocoa trees. Its average organic matter content in cocoa-growing soils is very significant. The spatial gradient of M. excelsa has had a significant impact on the amount of organic matter less than 6% in the iroko rhizosphere while it reaches 6 to 8% in cocoa trees. Its preservation in cocoa trees contributes to improving the properties of poor soils. However, differential processes ultimately affect the decomposition rates of organic matter, hence the separation of cocoa trees by at least 10 m to benefit from the supply of carbon, nitrogen and phosphorus ions.
Keywords
Agroforestry, Milicia excelsa, Cocoa Farming, Soil Fertility, Côte d’Ivoire
To cite this article
Akedrin Tetchi Nicaise, Akotto Odi Faustin, Kouassi Kouadio Claude, Impact of the Conservation of Iroko (Miliciaexcelsa (Welw.) C.C. Berg, Moraceae) on the Fertility of Cocoa-growing Soils in Agroforests of Djèkro (Center-West, Côte d'Ivoire), American Journal of Agriculture and Forestry. Vol. 8, No. 4, 2020, pp. 137-143. doi: 10.11648/j.ajaf.20200804.17
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Duru D. M., Therond, O., Fares, M. 2015. Designing agroecological transitions; A review. Agron. Sustain. Dev. 35. 1237-1257p.
[2]
Duru, M., Therond, O. 2014. Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization? Reg Environ Chang.
[3]
Nair, P. K. R. 2007. The Coming of Age of Agroforestry. J. of Sci. of Food & Ag. 87: 1613-1619p.
[4]
Valentini, G. S. 2007. Evaluation de la séquestration du carbone dans des plantations agroforestières et des jachères issues d’une agriculture migratoire dans les territoires autochtones de Talamanca, au Costa Rica. Mémoire de Maitrise, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université de Laval. Quebec. 88 p.
[5]
Sylvester, O. 2019. Achieving Food Security in the Face of Inequity, Climate Change, and Conflict, The Difficult Task of Peace, 13: 277-295p.
[6]
Adamczewska-Sowińska, K., Sowiński, J. 2019. Polyculture Management: A Crucial System for Sustainable Agriculture Development, Soil Health Restoration and Management, 279-319p.
[7]
Cardinael, R. 2017. Stockage de carbone et dynamique des matières organiques des sols en agroforesterie sous climat méditerranéen et tempéré. Thèse de Doctorat de l’Université Paris Saclay, 266p.
[8]
Mollet, M., Téré, H., Herzog, F. 2000. Ligneux à usages multiples dans les systèmes agraires tropicaux: une étude de cas de Côte d'Ivoire. Schweiz. Z. Forstwes. 151: 355-364p.
[9]
Azonkponon, N. 2001. Conservation in situ de l'Iroko (Milicia excelsa W. C. Berg) dans l'aire culturelle vodoun au Bénin. Mém. de DESS, Université d'Abomey-Calavi, Bénin, 107 p.
[10]
Tabuti, J. R. S. 2007. The uses, local perceptions and ecological status of 16 woody species of Gadnumire Sub-county, Uganda. Biodivers. Conserv. 16: 1901-1915p.
[11]
Jobbagy, E. G., Jackson, R. B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423-436p.
[12]
Chabbi, A., Cellier, P., Rumpel, C., Gastal, F., Lemaire, G. 2012. Cycle du carbone et risques environnementaux dans les écosystèmes prairiaux. Innovations Agronomiques 22: 17-30p.
[13]
Ouinsavi, C., Sokpon, N. 2010. Morphological variation and ecological structure of Iroko (Milicia excels Welw. C. C. Berg) populations across different biogeographical zones in Benin. International Journal of Forestry Research. 8: 10p.
[14]
Tano, M. A. 2012. Crise cacaoyère et stratégies des producteurs de la sous-préfecture de Méadji au Sud-ouest ivoirien. Thèse de Doctorat, Université Toulouse le Mirail-Toulouse II, France, 263 p.
[15]
Kpangui, K. B., Kouamé, D., Gone, B. Z. B., Vroh, B. T. A., Koffi, B. J. C., Adou, Y. C. 2015. Typology of cocoa-based agroforestry systems in a forest-savannah transition zone: case study of Kokoumbo (Centre, Côte d’Ivoire). International Journal of Agronomy and Agricultural Research (IJAAR) 6 N° 3: 36-47p.
[16]
Adou, Y. C., Kpangui, K. B., Vroh, B. T. A., Ouattara, D. 2016. Pratiques culturales, valeurs d’usage et perception des paysans des espèces compagnes du cacaoyer dans des agroforêts traditionnelles au centre de la Côte d’Ivoire. Revue d’ethnoécologie, 9, 2016, 24-74p.
[17]
N’guessan, K. J-C., Akotto, O. F., Snoeck, D., Camara, M., Yao-Kouamé, A. 2016. Potentiel de fertilité chimique des vergers de cacaoyer Theobroma cacao L. (Malvaceae) en Côte d’Ivoire. IJIAS, 18 (3): 868-879p.
[18]
Dagnélie, P. 2008. Le plan d'expérience évolue. Faculté universitaire des Sciences agronomiques, Gembloux (Belgique Revue MODULAD, N° 38. 24 p.
[19]
Ake, A. 2001-2002. Flore de la Côte d’Ivoire 1, catalogue, systématique, biogeography et écologie. Suisse: Conservatoire et jardin Botanique de Genève; Boissiera 57, 396p.
[20]
White, F. 1986. La végétation de l'Afrique. Mémoire accompagnant la carte de végétation de l'Afrique UNESCO /AETFAT/UNSO. ORSTOM et UNESCO. Paris, collection Recherches sur les Ressources Naturelles, 20: 1-384p.
[21]
Core, R., Team, R. 2019. A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria 2019.
[22]
Studio, R., Team, RStudio. 2018. Integrated Development Environment for R, RStudio, Inc., Boston.
[23]
UICN. 2015. IUCN Red List of Threatened Species. Version 2015.1.
[24]
Ouattara, D., Kouamé, D., Tiébré, M. S., Cissé, A., N'Guessan, K. E. 2016. Diversité floristique et usages des plantes dans la zone soudanienne du Nord-ouest de la Côte d'Ivoire. Journal of Animal and Plant Sciences, 31 (1): 4815-4830p.
[25]
Ouattara, D., Vroh, B. T. A., Kpangui, K. B., N'Guessan, K. E. 2013. Diversité végétale et valeur pour la conservation de la réserve botanique d’Agbaou en création, Centre-ouest, Côte d’Ivoire. Journal ofAnimal and Plant Sciences, 20 (1): 3034-3047p.
[26]
Gavaland, A., Burnel, L. 2005. Croissance et biomasse aérienne de noyers noirs en parcelle agroforestière; Rapport du WP3 + annexes, Projet européen SAFE, 5p.
[27]
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., Vivanco, J. M. 2006. The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms. Annual Review of Plant Biology 57, 233-266p.
[28]
Palma, J. H. N., Oliveira, T. S., Crous-Duran, J., Paulo, J. A. 2016. Using Yield-SAFE model to assess hypothetical eucalyptus silvopastoral systems in Portugal in 3rd European Agroforestry Conference Book of Abstracts. Gosme M et al. (eds.). European Agroforestry Federation, Montpellier. 348-351p.
[29]
Béral, C., Andueza, D., Ginane, C., Bernard, M., Liagre, F., Girardin, N., Emile, J-C., Novak, S., Grandgirard, D., Deiss, V., Bizeray, D., Thiery, M., Rocher, A. 2018. Agroforesterie en système d’élevage ovin: étude de son potentiel dans le cadre de l’adaptation au changement climatique. 158 p.
[30]
Bertrand, I., Chabbert, B., Kurek, B., Recous, S., 2006. Can the Biochemical Features and Histology of Wheat Residues Explain their Decomposition in Soil? Plant and Soil 281: 291-307p.
[31]
Betencourt, E. 2012. Interactions entre céréale et légumineuse en association et acquisition de phosphore du sol: processus rhizosphériques sous-jacents. PhD. CIRAD, Montpellier SupAgro, France.
[32]
Nandjui, J., Voko, D. R. R., Kouadio, A. N. M. S., Fotso, B., Tano, Y., Zeze, A. 2013. Assessment of the occurrence and abundance of mycorrhizal fungal communities in soils from yam (Dioscorea spp.) cropping fields in Dabakala, North Côte d’Ivoire. African Journal of Agricultural Research 8 (44): 5572-5584p.
[33]
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Putten, W. H., Wall, D. H. 2004. Ecological Linkages Between Aboveground and Belowground Biota. Science 304, 1629-1633p.
[34]
Amosse, J., Turberg, P., Kohler-Milleret, R., Gobat, J. M., Le Bayon, R. C. 2015. Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials. Geoderma 243-244, 50-57p.
Browse journals by subject