Volume 8, Issue 5, September 2020, Page: 214-222
Ecological and Economic Potentials of Cocoa Agroforestry Systems in the Center Region of Cameroon
Madountsap Tagnang Nadege, Department of Plant Biology, Faculty of Science, University of Douala, Cameroon
Simo Claude, Department of Plant Biology, Faculty of Science, University of Douala, Cameroon
Kabelong Banoho Louis-Paul Roger, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon; International Union for Conservation of Nature and Natural Ressources, Yaounde, Cameroon
Chimi Djomo Cedric, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon; Institute of Agricultural Research for Development, Yaounde, Cameroon
Ntsefong Godswill Ntsomboh, Institute of Agricultural Research for Development, Yaounde, Cameroon
Ntonmen Amandine Flore Yonkeu, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon
Tchinda Metagne Carole, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon
Tchoupou Votio Mireil, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon
Zapfack Louis, Department of Plant Biology, Faculty of Science, University of Yaounde, Cameroon
Received: Sep. 19, 2020;       Accepted: Oct. 5, 2020;       Published: Oct. 16, 2020
DOI: 10.11648/j.ajaf.20200805.15      View  12      Downloads  20
Abstract
Agroforestry especially in the context of cocoa production is a powerful tool for sustainable development. The overall objective of this study was to identify the type of cocoa Agroforestry System (CAS) that can conciliate ecological interests with existential concerns of rural populations. Characterization of the different types of CAS was done through a questionnaire survey of 140 cocoa farmers and field sampling in 25 m x 25 m quadrats where all trees of dbh ≥ 10 cm were inventoried. The undergrowth, the litter and the roots were collected respectively in quadrats of 1 m2; 0.5 m2; and 0.2 m2. A total of 122 quadrats were assessed in the different types of CAS in the study area. The results show that there are three types of CAS including Traditional, SODECAO and Innovative CAS. The most profitable CAS in terms of merchant cocoa are Innovative CAS (2223.75 $.ha-1) followed by SODECAO CAS (2014.61 $.ha-1). There is a significant difference (p < 0.001) between the carbon stock of Traditional CAS (107.90 t C.ha-1), SODECAO (87.78 t C.ha-1) and the Innovative CAS (28.98 t C.ha-1). The SODECAO CAS is the most appropriate to conciliate cocoa farming and carbon sequestration.
Keywords
Cocoa Agroforestry System, Carbon Stock, Ecological Value, Economic Value, Cameroon
To cite this article
Madountsap Tagnang Nadege, Simo Claude, Kabelong Banoho Louis-Paul Roger, Chimi Djomo Cedric, Ntsefong Godswill Ntsomboh, Ntonmen Amandine Flore Yonkeu, Tchinda Metagne Carole, Tchoupou Votio Mireil, Zapfack Louis, Ecological and Economic Potentials of Cocoa Agroforestry Systems in the Center Region of Cameroon, American Journal of Agriculture and Forestry. Vol. 8, No. 5, 2020, pp. 214-222. doi: 10.11648/j.ajaf.20200805.15
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Madountsap T. N, Zapfack L, Chimi D. C, Kabelong BLP, Tsopmejio T. I, Forbi P. F, Nasang J. M. 2017. Biodiversity and carbon stock in the SODECAO agroforestry system of center region of Cameroon: Case of talba locality. American Journal of Agriculture and Forestry, 5 (4), 121–129.
[2]
Dawoe E., Asante W., Acheampong E., Bosu P., 2016. Shade tree diversity and aboveground carbon stocks in theobroma cacao agroforestry systems: Implications for REDD+implementation in a West African cacao landscape. Carbon Balance and Management, 11, 1069. doi: 10.1186/s13021-016-0061-x.
[3]
Newell R, Stavins R., 2000. Climate change and forest sinks: Factors affecting the costs of carbon sequestration. Journal of Environmental Economics and Management, 40 (3): 211-235.
[4]
Fayolle A., Doucet J-L., Gillet J-F, Bourland N., Lejeune, P., 2013. Tree allome-try in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29-37.
[5]
Zapfack L., Chimi D. C., Noiha N. V., Zekeng J. C., Meyan-ya D. G. R., Tabue M. R. B., 2016. Correlation between associated trees, cocoa trees and carbon stocks potential in cocoa agroforests of Southern Cameroon. Sustainability in Environment. Vol. 1. N°2.
[6]
Kabelong B. L. P. R., Zapfack L., Weladji R. B, Djomo C. C., Nyako M. C., Bocko Y. E., Essono D. M., Nasang J. M, Tagnang N. M., Abessolo C. I. M., Sakouma K. R. M., Souahibou F. M., Palla F. J. S., Peguy T. K., Jiagho R., Kenmou T. L, Jumo U. A. C. K., Yi Andjik B. A. A., Mbobda R. B. T., 2018. Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, Eastern Cameroon. Journal of Forest Reseach. https://doi.org/10.1007/s11676-018-0839-7.
[7]
Brown S., Pearson T., 2005. Exploration du potentiel de séquestration du carbone dans les forêts classées de la République de Guinée. Arlington: Winrock International. 39 p.
[8]
Torquebiau E., 2007. L’Agroforesterie. Des arbres et des champs. (Eds). L’Harmattan. Paris, France, 153 p.
[9]
Malézieux E., 2011. Designing cropping systems from nature. Agronomy for Sustainable Development, 32, 15–29.
[10]
Sonwa D. J., Weise S. F., Gotz S. M., Janssens J. J., Howard-Yana S., 2014. Plant diversity management in cocoa agroforestry systems in West central Africa: effects of markets and households needs. Agroforestry systems. DOI 10. 1007/s10457-014-9714-5.
[11]
Madountsap T. N., Zapfack L., Chimi D. C., Kabelong B. L. P., Tsopmejio T. I., Tajeukem V. C., Forbi P. F., Ntonmen Y. A. F., Nasang J. M., 2018. Carbon storage potential of cacao agroforestry systems of different age and management intensity. Climate and Development, DOI: 10.1080/17565529.2018.1456895.
[12]
Norgrove L., Hauser S. 2013. Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Tropical Ecological, 54: 15-22.
[13]
Saj S., Jagoret P., Todem N. H., 2013. Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agroforestry Systems, 87: 1309-1320.
[14]
Temgoua L. F., Dongmo W., Nguimdo V., Nguena C., 2018. Diversité Ligneuse et Stock de Carbone des Systèmes Agroforestiers à base de Cacaoyers à l’Est Cameroun: Cas de la Forêt d’Enseignement et de Recherche de l’Université de Dschang. J. Appl. Biosci. 122: 12274-12286.
[15]
Tim M., 2007. Principes d’agroforesterie. Durrance, Myers, 12: 17391-33917.
[16]
Morgan J. A., Follett R. F., Allen L. H., Del Grosso S., Derner J. S., Dijkstra F., Franzluebbers A., Fry R., Paustian K., Schoeneberger M., 2010. Carbon sequestration in agricultural lands of the United States. Journal of Soil and Water Conservation, 65: 6-13.
[17]
Gockowski J., Sonwa D., 2011. Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environmental Management, 48, 307–321.
[18]
Sonwa D. J., Weise S. F., Nkongmeneck B. A., Tchatat M., Janssens M. J. J., 2017. Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agroforestry Systems, 91, 451–470.
[19]
Nair P. K. R., 2007. The Coming of Age of Agroforestry. Journal of Sciences Food and Agriculture, 87: 1613-1619.
[20]
Rusu E., 2013. The current situation of the stock of carbon in forest ecosystems at regional and global. Environment and Sustainable Development, 7 (1), 88–101.
[21]
Friedel H., Claudia H., Irene K., Pedro M., Mara M., 2016. Renforcer la compétitivité de la production de cacao et augmenter le revenu des producteurs de cacao en Afrique de l’Ouest et en Afrique centrale. 53113, Bonn, Germany, 174 p.
[22]
Lachenaud P., Oliver G., 1998. Influence d’éclaircies sur les rendements de cacaoyers. Plantation Recherche Développement, 5: 34-40.
[23]
Braudeau J., 1969. Le cacaoyer. Collection Techniques agricoles et productions tropicales. Paris, France, Maisonneuve et Larose, 304 p.
[24]
Mossu G., 1990. Le cacaoyer. Le technicien d’agriculture tropicale. Volume 14. Éditions Maisonneuve et Larose, Paris, 160 p.
[25]
Jagoret P., Michel-Dounias I., Snoeck D., Todem N. H, Malézieux E., 2012. Afforestation of savannah with cocoa agroforestry systems: A small-farmer innovation in central Cameroon. Agroforestry Systems, 86, 493-504.
[26]
Dixon J., Gulliver A., Gibbon D., 2001. Farming Systems and Poverty. Improving farmers livehoods in a changing world. Fao, Rome.
[27]
Sonwa D. J., Weise S. F., Janssens M. J. J., 2002. Etude de cas d’aménagement forestier exemplaire en Afrique Centrale: les systèmes agroforestiers cacaoyers Cameroun. In FAO Départements des forêts. Document de travail FM/12F FAO, Rome, Italie, 49 p.
[28]
Jagoret P., Michel I., Ngnogué T. H, Lachenaud P., Snoeck D., & Malézieux E., 2017. Structural characteristics determine productivity in complex cocoa agroforestry systems. Agronomy for Sustainable Development, 37, 60. doi: 10.1007/s13593-017-0468-0.
[29]
Salgado-Mora M. G., Ibarra-Nu´n˜ez G., Macı´as-Sa´mano J. E., Lo´pez-Ba´ez O., 2007. Diversidad arbo´rea en cacaotales des Soconusco, Chiapas, Me´xico. Interciencia, 32: 763-768.
[30]
Ruf F., Schroth G., 2004. Chocolate forests and monocultures: A historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In G. Schroth G. A. B. da Fonseca C. A. Harvey C., Gascon H. L, Vasconcelos A. M. N. Izac (Eds.), Agroforestry and biodiversity conservation in tropical landscapes (pp. 107-134). Washington, DC: Island Press.
[31]
Juhrbandt J., Duwe T., Barkmann J., Gerold G., Marggraf R., 2010. Structure and management of cocoa agroforestry systems in Central Sulawesi across an intensification gradient. In: Tropical rainforests and agroforests under global change. Ecological and socioeconomic valuations. Tscharntke T., Leuschner C., Veldkamp E., Faust H., Guhardja E., Bidin A. (eds). Dordrecht, Pays-Bas, Springer: 115-140.
[32]
Asare A., Tetteh D. A., 2010. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agroforestry Systems, 79: 355-368.
[33]
Valet F., Berry D., 1997. Réforme des institutions dans les filières café-cacao au Cameroun. Chronique des années 1990 à 1997. CIRAD-SAR, Document N°11, Montpellier, France. http://www.iucnredlist.org/search.
[34]
Mbondji P., 2010. Le cacaoyer au Cameroun. Yaoundé: Presse de l’université catholique d’Afrique Centrale, Cameroun. 254 p.
[35]
Ngono F., Mala A. W., Levang P., Ambang Z., 2015. Evolution des systèmes agroforestiers cacao et impact environnemental à Mbangassina: cas du village Talba. Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo, 5, 62 –67.
[36]
Ndoumbè M., 2003. Impact of removing disease pods on cocoa black pod caused by Phythopththora megakarya and on cocoa production in Cameroon. Crop Protection, 23: 415-424.
[37]
Pédelahore P., 2014. Farmers ‘accumulation strategies and agroforestry systems intensification: The example of cocoa in the Central region of Cameroon over the 1910-2010.
[38]
Jiofack T., Guedje N. M., Tchoundjeu Z., Fokunang C., Lejoly J., Kemeuze V., 2013. Agroforestry typology of some cocoa based agroforests in the Mbam and Inoubou division: The importance for local population livelihoods. Journal of Ecology and the Natural Environment, 5 (12): 378-386.
[39]
Santoir C., Bopda A., 1995. Atlas régional Sud-Cameroun. Editions de l’Orstom Paris, France, 53 p.
[40]
Elong J. G., 2016. Éton et Manguissa, de la Lékié au Mbam-et-Kim: jeux et enjeux fonciers (Centre-Cameroun). Douala, Cameroun: Les Cahiers d’Outre-Mer. 18p.
[41]
Letouzey R., 1968. Etude phytogéographique du Cameroun. Lechevalier, Paris, 511p.
[42]
Bara G., Schoonmaker K. F., 1991. Introduction à la méthode accélérée de recherche participative (MARP): quelques notes pour appuyer une formation pratique 2ème Ed. International Institute for Environment and Development. Suitainable Agriculture Programme, Rome, 1-70.
[43]
Beaud S., Weber F., 2003. Guide de l’enquête de terrain. Ed. La Découverte, Paris, 357 p.
[44]
Nji A., Tchakoa J., 2000. Analyse des projets. Programme d’Enseignement à distance. Dschang, Cameroun. 30 p.
[45]
Noiha N. V., Zapfack L., Mbade L. F., 2015. Biodiversity management and plant dynamic in a cocoa agroforest (Cameroon). International Journal of Plant & Soil Science, 6 (2), 101-108.
[46]
Gates J. & Gilly B., 1987. Un modèle analytique d'aide à la décision en aquaculture. Archimer, Paris, 92 p.
[47]
Alary V., 1996. Incertitude et prise de risque en période d’ajustement: Le comportement des producteurs de cacao du Cameroun avant et après 1994. Doctorat, Université de Paris 1, Sorbone, 749 p.
[48]
Chave J., Ejou-Mechain R. M, Urquez B. A, Chidumayo E., Colgan S. M, Delitti W. B. C., Duque A., Eid T., Fearnside P. M., Goodman C. R., Henry M., Martinez-Yrizar A., Mugasha A. W, Muller- Landau C. H., Mencuccini M., Nelson B. W, Ngomanda A., Nogueira E. M., Ortiz-Malavassi E., El Pelissier R., Ploton P., Ryan C. M., Saldarriaga J. G., Vieilledent G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 10 (12629), 48 p.
[49]
Cummings D., Boone K. J., Perry D., Hughes R., 2002. Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 163, 293–307.
[50]
Zapfack L., Noiha N. V., Dziedjou K. P. J., Zemagho L., Fomete N. T., 2013. Deforestation and carbon stocks in the surroundings of Lobeké National Parc (Cameroon) in Congo Basin. Environment and natural Resources Research, 3 (2): 1-9.
[51]
Héraud B., 2015. Cop 21: 8€ le prix de la tonne de carbone sur le marché européen. Novethic, 1-3.
[52]
Schroth G., Harvey C. A., 2007. Biodiversity conservation in cocoa production landscapes: na overview. Biodiversity and Conservation springer, 16 (8): 2237-2244.
[53]
Gockowski J., Afari-Sefa V., Sarpong B. D. Y. B., Osei-Asare B. Y, Fredua A. F. N., 2013. Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: What role for certification. International Journal of Agricultural, 11 (4), 331–346.
[54]
Sonwa D. J, Weise S. F., Tchatat M., Nkongmeneck B. A., Adesina A. A., Ndoye O., Gockowski J., 2001. The role of cocoa agroforests in rural and community forestry in Southern Cameroon. Rural Development Forestry Network, 10 p.
[55]
Somarriba E., Cerda R., Orozco L., Cifuences M., Davila H., Espin T., Mavisoy H., Avila G., Alvarado E., Poveda V., Astorga C., Say E., Deheuvels O., 2013. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems and Environment, 173, 46-57.
[56]
Kotto-Same J., Woomer P. L., Moukam A., Zapfack L., 1997. Carbon dynamics in slash and burn agriculture and land use alternative in the humid forest zone in Cameroon. Agriculture Ecosystems Environment, 65: 245-256.
[57]
Adu-Bredu S., Abekoe M. K., Tachie-Obeng E., Tschakert P., 2011. Carbon stock under four land use systems in tree varied ecological zones in Ghana Constant. Forestry Reseach Institute of Ghana (FORIG), Kumasi, Ghana. 9 p.
[58]
Manley R. J., Ickowicz A., Masse D., Floret C., Richard D., Feller C., 2004. Spatial carbon, nitrogen and phosphorus budget in a village of the west Africa Savanna-I. Element pools and structure of a mixed-farming system. Agricultural systems, 79: 55-81.
[59]
Solomon D., Fritzsche F., Lehman J., Tekalign M., Zech W., 2002. Soil organic matter dynamics in the sub-humid agro-ecosystems of Ethiopian Highlands: Evidence from natural 13 C abundance and particle size fractionation. Soil Sciences Society of America Journal, 66: 969-978.
Browse journals by subject