This study was carried out in typical SODECAO (Cocoa Development Company) agroforestry systems of Talba locality (Central region of Cameroon). The objective was to assess the role of typical SODECAO agroforestry systems in the conservation of biodiversity and the climate change mitigation. Trees inventories of diameter ≥10 cm and all cocoa trees were carried out in 40 plots of 25 m x 25 m. Cocoa Agroforests (CAF) sampled were stratified in three age classes (≥10, 10-20 and 20 years represented by young, middle and old cocoa agroforests respectively). Their aboveground biomass was estimated using allometric equations. A total of 21 trees species belonging to 19 genera and 14 families were inventoried. Of the total number of species of trees recorded, 24% were threatened looking at their IUCN (International Union for Conservation of Nature) status. Indeed, 9 species (43%) were indigenous and 12 (57%) exotic. The biodiversity indices values found were: Shannon (2.7), Pielou (0.7) and Simpson (0.9). The estimation of the specific wealth varied from 73-81% in CAF. The abundance of cocoa shrubs and associated tree species were estimated to 1104 stems ha-1 and 77 stems ha-1 respectively. The total carbon stock was 100 Mg Cha-1. Cocoa shrubs and associated tree species carbon stock were 30 and 70 Mg Cha-1 respectively. According to the three age classes considered, there were a significantly differences between their carbon stocks (ANOVA, p <0.05). SODECAO cocoa agroforestry systems could be recognized amongst one of the major issues of international negotiations for the fight against climate change.
Published in | American Journal of Agriculture and Forestry (Volume 5, Issue 4) |
DOI | 10.11648/j.ajaf.20170504.16 |
Page(s) | 121-129 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
SODECAO, Biodiversity, IUCN Status, Carbon Stock, Talba
[1] | Dounias, E. 1995. Composer autour d’une composée Chromolaena odorata et systèmes agraires des forêts tropicales humides. Atelier international African farmers and their environment in a long term perspective, Wageningen. 111 p. |
[2] | Ruf, F. 1995. Booms et crises du cacao. Les vertiges de l’or brun. Karthala Paris, (France). |
[3] | Ngono, F., Mala, A. W., Levang, P. and Ambang, Z. 2015. Evolution des systèmes agroforestiers cacao et impact environnemental à Mbangassina: cas du village Talba. Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo. Vol. 5.62-67. |
[4] | Mbolo, A. M., Zekeng, J. C., Mala, A. W., Fobane, J. L., Chimi, D. C., Nyako, M. C., Tamandjong, V. 2016. The role of Cocoa agroforestry in conserving forest tree diversity in Central Region of Cameroon. Agrofor. Sys. 90 (4), 577-590. |
[5] | Deheuvels, O. 2011. Compromis entre productivité et biodiversité sur un gradient d’intensité de gestion de systèmes agroforestiers à base de cacaoyers de Talamanca, Costa Rica. Thèse de Doctorat: SupAgro de Montpellier, Montpellier (France). 185 p. |
[6] | Nair, P. K. R. 2012. Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor. Sys. Vol. 86. 243–253 doi: 10.1007/s10457-011-9434-z. |
[7] | Losch, B., Fusillier, J. L., Dupraz, P. O. and Ndjoya, J. 1991. Stratégies des producteurs en zone caféière et cacaoyère du Cameroun: Quelles adaptations à la crise ? Cameroun: Collection DSA 12, DSA-CIRAD. 252 p. |
[8] | Jagoret, P. and Nyassé, S. 2003. Intensification raisonnée du verger de cacaoyer Camerounais par l’identification des systèmes de productions compétitifs et durables. Rapport annuel scientifique et technique IRAD/ CIRAD, projet Mise au point de systèmes de cacaoculture compétitif et durable en Afrique FSP. 2000- 137p. |
[9] | Manfo, D. A., Tchindjang, M. and Youta, H. J. 2015. Systèmes agroforestiers et conservation de la biodiversité dans un milieu fortement anthropisé: le cas d’Obala Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo. Vol. 5. |
[10] | David, O., Oke and Gailyson, Y. J. 2013. Traditional agroforestry practices and woody species conservation in the derived savanna ecosystem of Adamawa state, Nigeria Biodiver. J. Vol. 4. N°3. |
[11] | Zapfack, L., Engwald, S., Sonké, B., Achoundong, G., Mandong, B. A. 2002. The impact of land use conversion on plant biodiversity in the forest zone of Cameroon. Biodiversity and Conservation. Vol. 11. N° 11. |
[12] | Harvey, C. A, Gonzales, J. G and Somarriba, E. 2006. Dung beetle and terrestrial mammal diversity in forest, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodiversity and Conservation. Vol. 15. |
[13] | Sonwa, D., Nkongmeneck, B. A., Weise, S. F., Tchatat, M., Adesina, A. A., and Janssens, J. J. M. 2007. Diversity of plants in cocoa agroforêts in the humid forest zone of Southern Cameroon. Biodiversity and Conservation. Vol. 16. |
[14] | Tonka, M., Jagoret, P., Tchouamo, I. R. and Couve C. 2008. Caractérisation des systèmes de cacaoculture agro-forestiers dans la zone de front pionnier du Centre Cameroun. Atelier de réflexion « Les agroforêts d’Afrique de l’Ouest et du Centre: dynamiques, performances et avenir?» Sérédou (Guinée). 8 p. |
[15] | Gockowski, J. and Sonwa, D. 2011. Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Envir. Manage. Vol. 48. |
[16] | Somarriba, E., Cerda, R., Orozco, L., Cifuences, M., Davila, H., Espin, T., Mavisoy, H., Avila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E. and Deheuvels, O., 2013. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agricul. Ecosys. Env. Vol. 173. |
[17] | Zapfack, L., Noiha, N. V., Dziedjou, K. P. J., Zemagho, L., Fomete, N. T. 2013. Deforestation and carbon stocks in the surroundings of Lobéké National Parc (Cameroon) in Congo Basin. Environment and Natural Resources Research. Vol. 3. N° 2. |
[18] | Tsoumou, B. R., Lumandé, K. J., Kampé, J. P. and Nzila, J. D. 2016. Estimation de la quantité de Carbone séquestrée par la Forêt Modèle de Dimonika (Sud-ouest de la République du Congo). Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo. Vol. 6. |
[19] | Zapfack, L., Chimi, D. C., Noiha, N. V., Zekeng, J. C., Meyan-ya, D. G. R. and Tabue, M. R. B. 2016. Correlation between Associated Trees, Cocoa Trees and Carbon Stocks Potential in Cocoa Agroforests of Southern Cameroon. Sustainability in Environment. Vol. 1. N° 2. |
[20] | Dixon, J., Gulliver, A. and Gibbon, D. 2001. Farming systems and poverty. Improving farmers livehoods in a changing world. FAO, Rome. |
[21] | FAO, 2009. Directives pour la Planification de l’Utilisation des Terres. Département du développement durable, archives de document de la FAO, 87-89. |
[22] | Sonwa, D. J., Weise, S. F. and Janssens, M. J. J. 2002. Etude de cas d’aménagement forestier exemplaire en Afrique centrale: Les systèmes agroforestiers cacaoyers Cameroun. Cameroun: FAO, Départements des forêts. |
[23] | Bhagwat, S. A., Willis, K. J., Birks, H. J. B. and Whittaker, R. J. 2008. Agroforestry: A refuge for tropical biodiversity? Trends in Ecology and Evolution. Vol. 23. N°5. |
[24] | Noiha, N. V., Zapfack, L. and Mbade, L. F. 2015. Biodiversity Management and Plant Dynamic in a Cocoa Agroforest (Cameroon). International Journal of Plant & Soil Science. Vol. 6. N°2. |
[25] | Champaud, J. 1966. L’économie cacaoyère du Cameroun. Cah. Orstom, ser. Sci. hum. Vol.3. N°3. |
[26] | Santoir, C. 1995. Les équipements collectifs. In C. Santoir & A. Bopda, eds. Atlas régional Sud-Cameroun. ORSTOM & MINREST- (Cameroun). 37-39. |
[27] | Mbog, P. D. 1996. Contribution de l’Union européenne à la restructuration de la filière cacao au Cameroun. Conférence de l’ECOPM, sur l’avenir des relations UE-ACP au-delà de Lomé IV, 12-14 juin 1996. Maastrich. |
[28] | Varlet, F. 1997. Réforme des institutions dans les filières café-cacao au Cameroun. Chronique des années 1990 à 1997. CIRAD-SAR, Document N°11, Montpellier, France. |
[29] | Mbondji, P. 2010. Le cacaoyer au Cameroun. Yaoundé: Presse de l’université catholique d’Afrique Centrale. 254 p. |
[30] | Ndoumbè, M. 2003. Impact of removing disease pods on cocoa black pod caused by Phythopththora megakarya and on cocoa production in Cameroon. Crop Protection. Vol. 23. |
[31] | Letouzey, R. 1985. Notice de la carte phytogéographique du Cameroun au 1: 500.000. 5 documents et 6 cartes. Toulouse: Institut de la Carte Internationale de la Végétation. |
[32] | Ambassa-Kiki, R. and Mvondo-Zé, D. 2001. Les différentes terres agricoles du Cameroun. Yaoundé, Saild. In: La voix du Paysan, recueil de fiches techniques pour l’entrepreneur rural, tome 2. Pp. 9-20. |
[33] | Adou, Y. C. Y., Blom, E. C., Denguéadhé, K. T. S., Rompaey, V. R. S. R., N'Guessan, K. E., Wittebolle, G. and Bongers, F. 2010. Diversité floristique et végétation dans le Sud du Parc National de Tai: Tropenbos. |
[34] | Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Statist. Vol. 11. |
[35] | Burnham, K. P. and Overton, W. S. 1979. Estimation robuste de la taille de la population lorsque les probabilités de capture varient selon les animaux. Ecology. Vol.60. |
[36] | UICN, 2001. Catégories et Critères de l’UICN pour la Liste Rouge. Version 3.1. Commission de la sauvegarde des espèces de l’UICN. UICN, Gland, Suisse et Cambridge, Royaume-Uni. 37 p. |
[37] | Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C. and Chave, J. 2009. Global wood density database. Retrieved from http://www.hdl.handle.net/10255/dryad.235 2009. Global wood density database. Retrieved from http://www.hdl.handle.net/10255/dryad.235 |
[38] | Chave, J., Rejou-Mechainn, M., Burquez, A., Chidumayo, E., Colgan, S. M., Delitti, B. C. W., Vieilledent, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol., http://dx.doi.org/10.1111/gcb.12629. |
[39] | Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B. and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. Vol.45. |
[40] | Djuikouo, K. M. N., Doucet, J. L., Nguembou, K. C., Simon, L., Lewis, L. S. and Sonke, B. 2010. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. Afr. J. Ecol. Vol. 48. |
[41] | Lewis, S., Sonke, B., Sunderland, T., Begne, S. K., Gonzale, L. G., Van der Heijden, M. F. G., Phillips, L. O., Affum-Baffoe, K., Timothy, R., Baker, R. T., Banin, L., Bastin, J. F., Beeckman, H., Boeckx, P., Bogaert, J., De Cannier, C., Chezeaux, E., Clark, J. C., Collins, M., Djagbletey, G., Djuikouo, K. M. N., Droissart, V., Doucet J. L., Ewango, N. E. C., Fauset, S., Feldpausch, R. T., Foli, G. E., Gillet, J. F., Hamilton, C. A., Harris, J. D., Hart, B. T., De Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, J. K., Kearsley, E., Leal, E. M., Lloyd, J., Lovett, C. J., Makana, J. R, Malhi, Y., Marshall, R. A., Lucas Ojo, Peh, S. H. E., Pickavance, G., Poulsen, R. J., Reitsma, M. J., Sheil, D., Simo, M., Steppe, K., Taedoumg, E. H., Talbot, J., Taplin, R. D. J., Taylor, D., Thomas, C. S., Toirambe, B., Verbeeck, H., Vleminckx, J., White, T. J. L., Willcock, S., Woell, H. and Zemagho, L. 2013. Aboveground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. B. 368, http://dx.doi.org/10.1098/rstb.2012.0295. |
[42] | Hairiah, K., Ekadinata, A., Sari, R. R. and Rahayu, S. 2011. Petunjuk praks Pengukuran cadangan karbon dari ngkat plot ke ngkat ben- tang lahan. World Agroforestry Centre, ICRAF South- East Asia and University of Brawijaya (UB), Malang, Indonesia: ISBN 978-979-3198-53-8. |
[43] | Cummings, D., Boone, K. J., Perry, D. and Hughes, R., 2002. Aboveground Biomass and Structure of Rainforests in the Southwestern Brazilian Amazon. For. Ecol. Manage. Vol.163. |
[44] | Brown S. et Pearson T., 2005. Guide de mesure et de suivi de C dans les forêts et prairies Herbeuses. Rome: Rapport présenté à l’agence Américaine pour le développement international. Forestry Paper. 39p |
[45] | Jagoret, P., Kwesseu, J., Messie, C., Michel-Dounias, I. and Male, ´Z. E. 2014. Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor. Syst., http://dx.doi.org/10.1007/s10457-014-9698-1 |
[46] | Mapongmetsem, P. M., Etchiké, D. and Ngassoum, M. B. 2016. Conservation et valorisation de la biodiversité dans les agroforêts de la zone périurbaine de la ville Bafia (Région du Centre au Cameroun). Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo. Vol. 6. |
[47] | Oke, D. O. and Odebiyi, K. A. 2007. Traditional cocoa-based agroforestry and forest species conservation in Ondo State, Nigeria. Agric. Ecosyst. Environ. Vol. 122. |
[48] | Asare, A. and Tetteh, D. A. 2010. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agrofor. Syst. Vol.79. |
[49] | Bisseleua D. H. B. & Stefan V., 2008. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodiversity and Conservation. Vol. 17. |
[50] | Annon, 2000. Etudes socio-économiques régionales au Cameroun. Province du Centre. Ministère de la Planification et l’Administration du Territoire, Projet PNUD-OPS CMR/98/005/01/99. Yaoundé, 52 p. |
APA Style
Madountsap Tagnang Nadège, Zapfack Louis, Chimi Djomo Cédric, Kabelong Banoho Louis-Paul, Tsopmejio Temfack Ingrid, et al. (2017). Biodiversity and Carbon Stock in the SODECAO Agroforestry System of Center Region of Cameroon: Case of Talba Locality. American Journal of Agriculture and Forestry, 5(4), 121-129. https://doi.org/10.11648/j.ajaf.20170504.16
ACS Style
Madountsap Tagnang Nadège; Zapfack Louis; Chimi Djomo Cédric; Kabelong Banoho Louis-Paul; Tsopmejio Temfack Ingrid, et al. Biodiversity and Carbon Stock in the SODECAO Agroforestry System of Center Region of Cameroon: Case of Talba Locality. Am. J. Agric. For. 2017, 5(4), 121-129. doi: 10.11648/j.ajaf.20170504.16
AMA Style
Madountsap Tagnang Nadège, Zapfack Louis, Chimi Djomo Cédric, Kabelong Banoho Louis-Paul, Tsopmejio Temfack Ingrid, et al. Biodiversity and Carbon Stock in the SODECAO Agroforestry System of Center Region of Cameroon: Case of Talba Locality. Am J Agric For. 2017;5(4):121-129. doi: 10.11648/j.ajaf.20170504.16
@article{10.11648/j.ajaf.20170504.16, author = {Madountsap Tagnang Nadège and Zapfack Louis and Chimi Djomo Cédric and Kabelong Banoho Louis-Paul and Tsopmejio Temfack Ingrid and Forbi Preasious Funwi and Ntonmen Yonkeu Amandine Flore and Nasang Julliete Mancho}, title = {Biodiversity and Carbon Stock in the SODECAO Agroforestry System of Center Region of Cameroon: Case of Talba Locality}, journal = {American Journal of Agriculture and Forestry}, volume = {5}, number = {4}, pages = {121-129}, doi = {10.11648/j.ajaf.20170504.16}, url = {https://doi.org/10.11648/j.ajaf.20170504.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20170504.16}, abstract = {This study was carried out in typical SODECAO (Cocoa Development Company) agroforestry systems of Talba locality (Central region of Cameroon). The objective was to assess the role of typical SODECAO agroforestry systems in the conservation of biodiversity and the climate change mitigation. Trees inventories of diameter ≥10 cm and all cocoa trees were carried out in 40 plots of 25 m x 25 m. Cocoa Agroforests (CAF) sampled were stratified in three age classes (≥10, 10-20 and 20 years represented by young, middle and old cocoa agroforests respectively). Their aboveground biomass was estimated using allometric equations. A total of 21 trees species belonging to 19 genera and 14 families were inventoried. Of the total number of species of trees recorded, 24% were threatened looking at their IUCN (International Union for Conservation of Nature) status. Indeed, 9 species (43%) were indigenous and 12 (57%) exotic. The biodiversity indices values found were: Shannon (2.7), Pielou (0.7) and Simpson (0.9). The estimation of the specific wealth varied from 73-81% in CAF. The abundance of cocoa shrubs and associated tree species were estimated to 1104 stems ha-1 and 77 stems ha-1 respectively. The total carbon stock was 100 Mg Cha-1. Cocoa shrubs and associated tree species carbon stock were 30 and 70 Mg Cha-1 respectively. According to the three age classes considered, there were a significantly differences between their carbon stocks (ANOVA, p <0.05). SODECAO cocoa agroforestry systems could be recognized amongst one of the major issues of international negotiations for the fight against climate change.}, year = {2017} }
TY - JOUR T1 - Biodiversity and Carbon Stock in the SODECAO Agroforestry System of Center Region of Cameroon: Case of Talba Locality AU - Madountsap Tagnang Nadège AU - Zapfack Louis AU - Chimi Djomo Cédric AU - Kabelong Banoho Louis-Paul AU - Tsopmejio Temfack Ingrid AU - Forbi Preasious Funwi AU - Ntonmen Yonkeu Amandine Flore AU - Nasang Julliete Mancho Y1 - 2017/07/13 PY - 2017 N1 - https://doi.org/10.11648/j.ajaf.20170504.16 DO - 10.11648/j.ajaf.20170504.16 T2 - American Journal of Agriculture and Forestry JF - American Journal of Agriculture and Forestry JO - American Journal of Agriculture and Forestry SP - 121 EP - 129 PB - Science Publishing Group SN - 2330-8591 UR - https://doi.org/10.11648/j.ajaf.20170504.16 AB - This study was carried out in typical SODECAO (Cocoa Development Company) agroforestry systems of Talba locality (Central region of Cameroon). The objective was to assess the role of typical SODECAO agroforestry systems in the conservation of biodiversity and the climate change mitigation. Trees inventories of diameter ≥10 cm and all cocoa trees were carried out in 40 plots of 25 m x 25 m. Cocoa Agroforests (CAF) sampled were stratified in three age classes (≥10, 10-20 and 20 years represented by young, middle and old cocoa agroforests respectively). Their aboveground biomass was estimated using allometric equations. A total of 21 trees species belonging to 19 genera and 14 families were inventoried. Of the total number of species of trees recorded, 24% were threatened looking at their IUCN (International Union for Conservation of Nature) status. Indeed, 9 species (43%) were indigenous and 12 (57%) exotic. The biodiversity indices values found were: Shannon (2.7), Pielou (0.7) and Simpson (0.9). The estimation of the specific wealth varied from 73-81% in CAF. The abundance of cocoa shrubs and associated tree species were estimated to 1104 stems ha-1 and 77 stems ha-1 respectively. The total carbon stock was 100 Mg Cha-1. Cocoa shrubs and associated tree species carbon stock were 30 and 70 Mg Cha-1 respectively. According to the three age classes considered, there were a significantly differences between their carbon stocks (ANOVA, p <0.05). SODECAO cocoa agroforestry systems could be recognized amongst one of the major issues of international negotiations for the fight against climate change. VL - 5 IS - 4 ER -