The present study was conducted to determine the interaction effects of zinc availability and salt stress in Bangladeshi soybean cultivar (cv. Shohag) whether zinc can alleviate the hazardous effects of salt stress or not. In this study, the plants are grown in zinc treated soil and also exposed to increasing (0, 50, 100, 150, 200, and 250 mM NaCl) levels of salinity. The results showed that the dry weight of root, stem, leaves, petioles and total dry weight were significantly reduced by salinity. The activities of antioxidant enzymes, lipid peroxidation, proline content were significantly affected by salt stress. Zinc supplementation helped the plants to cope with the salinity stress by improving the total dry weight. The antioxidant enzyme activities including catalase (CAT) and ascorbate peroxidase (APX) and proline content increased in response to salinity. The extent of lipid peroxidation noticed in salt stressed plants. However, zinc application enhanced catalase and ascorbate peroxidase activity as well as proline content in growing plants at different salt concentrations. The interaction between zinc and salinity significantly reduced lipid peroxidation. Application of zinc to salt-stressed plants ameliorates the salinity induced hazardous effects by enhancing the activities of antioxidant enzymes such as CAT and APX and Proline content.
Published in | American Journal of Agriculture and Forestry (Volume 9, Issue 3) |
DOI | 10.11648/j.ajaf.20210903.18 |
Page(s) | 147-155 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Soybean, Salinity, Zinc, Biomass, Antioxidant Enzyme, Lipid Peroxidation
[1] | N. Akhtar, F. Hossain, A. Karim, Influence of calcium on water relation of two cultivars of wheat under salt stress, Int. J. Environ. 2 (2013) 1–8. https://doi.org/10.3126/ije.v2i1.9202. |
[2] | A. S. Wani, A. Ahmad, S. Hayat, Q. Fariduddin, Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea, Saudi J. Biol. Sci. 20 (2013) 183–193. https://doi.org/10.1016/j.sjbs.2013.01.006. |
[3] | K. Yan, H. Shao, C. Shao, P. Chen, S. Zhao, M. Brestic, X. Chen, Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone, Acta Physiol. Plant. 35 (2013) 2867–2878. https://doi.org/10.1007/s11738-013-1325-7. |
[4] | P. Ahmad, A. A. A. Latef, A. Hashem, E. F. Abd Allah, S. Gucel, L. S. P. Tran, Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea, Front. Plant Sci. 7 (2016). https://doi.org/10.3389/fpls.2016.00347. |
[5] | N. A. Anjum, A. Sofo, A. Scopa, A. Roychoudhury, S. S. Gill, M. Iqbal, A. S. Lukatkin, E. Pereira, A. C. Duarte, I. Ahmad, Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants, Environ. Sci. Pollut. Res. 22 (2015) 4099–4121. https://doi.org/10.1007/s11356-014-3917-1. |
[6] | M. Hussein, A. Embiale, A. Husen, I. M. Aref, M. Iqbal, Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars, Pakistan J. Bot. 49 (2017) 867–877. |
[7] | S. Rehman, G. Abbas, M. Shahid, M. Saqib, A. B. Umer Farooq, M. Hussain, B. Murtaza, M. Amjad, M. A. Naeem, A. Farooq, Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation, Ecotoxicol. Environ. Saf. 171 (2019) 146–153. https://doi.org/10.1016/j.ecoenv.2018.12.077. |
[8] | P. Ahmad, M. A. Ahanger, M. N. Alyemeni, L. Wijaya, D. Egamberdieva, R. Bhardwaj, M. Ashraf, Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content, J. Plant Interact. 12 (2017) 429–437. https://doi.org/10.1080/17429145.2017.1385867. |
[9] | K. Nahar, M. Rahman, M. Hasanuzzaman, M. M. Alam, A. Rahman, T. Suzuki, M. Fujita, Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings, Environ. Sci. Pollut. Res. 23 (2016) 21206–21218. https://doi.org/10.1007/s11356-016-7295-8. |
[10] | V. A. Dmitrieva, E. V. Tyutereva, O. V. Voitsekhovskaja, Singlet oxygen in plants: Generation, detection, and signaling roles, Int. J. Mol. Sci. 21 (2020) 3237. https://doi.org/10.3390/ijms21093237. |
[11] | S. K. Kohli, K. Khanna, R. Bhardwaj, E. F. Abd Allah, P. Ahmad, F. J. Corpas, Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules, Antioxidants. 8 (2019) 641. https://doi.org/10.3390/antiox8120641. |
[12] | G. Noctor, C. H. Foyer, Intracellular redox compartmentation and ROS-related communication in regulation and signaling, Plant Physiol. 171 (2016) 1581–1592. https://doi.org/10.1104/pp.16.00346. |
[13] | S. S. Gill, N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem. 48 (2010) 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016. |
[14] | A. H. Saeidnejad, Alleviative effects of zinc on physiological properties and antioxidants activity of maize plants under salinity stress, Int. J. Agric. Crop Sci. 5 (2013) 529–537. |
[15] | C. H. Foyer, G. Noctor, Ascorbate and glutathione: The heart of the redox hub, Plant Physiol. 155 (2011) 2–18. https://doi.org/10.1104/pp.110.167569. |
[16] | S. Chawla, S. Jain, V. Jain, Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.), J. Plant Biochem. Biotechnol. 22 (2013) 27–34. https://doi.org/10.1007/s13562-012-0107-4. |
[17] | H. AbdElgawad, G. Zinta, M. M. Hegab, R. Pandey, H. Asard, W. Abuelsoud, High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs, Front. Plant Sci. 7 (2016) 1–11. https://doi.org/10.3389/fpls.2016.00276. |
[18] | B. Gupta, B. Huang, Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization, Int. J. Genomics. 2014 (2014). https://doi.org/10.1155/2014/701596. |
[19] | Z. F. Rakhmankulova, E. V. Shuyskaya, A. V. Shcherbakov, V. V. Fedyaev, G. Y. Biktimerova, R. R. Khafisova, I. Y. Usmanov, Content of proline and flavonoids in the shoots of halophytes inhabiting the South Urals, Russ. J. Plant Physiol. 62 (2015) 71–79. https://doi.org/10.1134/S1021443715010112. |
[20] | S. Talbi, M. C. Romero-Puertas, A. Hernández, L. Terrón, A. Ferchichi, L. M. Sandalio, Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences, Environ. Exp. Bot. 111 (2015) 114–126. https://doi.org/10.1016/j.envexpbot.2014.11.004. |
[21] | R. Biczak, Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants, J. Hazard. Mater. 304 (2016) 173–185. https://doi.org/10.1016/j.jhazmat.2015.10.055. |
[22] | L. A. del Río, F. J. Corpas, E. López-Huertas, J. M. Palma, Plant superoxide dismutases: Function under abiotic stress conditions, in: Antioxidants Antioxid. Enzym. High. Plants, Springer International Publishing, 2018: pp. 1–26. https://doi.org/10.1007/978-3-319-75088-0_1. |
[23] | M. Hasanuzzaman, M. H. M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. Al Mahmud, M. Fujita, V. Fotopoulos, Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator, Antioxidants. 9 (2020) 1–52. https://doi.org/10.3390/antiox9080681. |
[24] | P. Ahmad, C. A. Jaleel, M. A. Salem, G. Nabi, S. Sharma, Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress, Crit. Rev. Biotechnol. 30 (2010) 161–175. https://doi.org/10.3109/07388550903524243. |
[25] | P. Ahmad, M. A. Ahanger, P. Alam, M. N. Alyemeni, L. Wijaya, S. Ali, M. Ashraf, Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes, J. Plant Growth Regul. 38 (2019) 70–82. https://doi.org/10.1007/s00344-018-9810-2. |
[26] | Y. W. Cheng, X. W. Kong, N. Wang, T. T. Wang, J. Chen, Z. Q. Shi, Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root, Ecotoxicol. Environ. Saf. 188 (2020) 109894. https://doi.org/10.1016/j.ecoenv.2019.109894. |
[27] | M. A. Ahanger, R. A. Mir, M. N. Alyemeni, P. Ahmad, Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism, Plant Physiol. Biochem. 147 (2020) 31–42. https://doi.org/10.1016/j.plaphy.2019.12.007. |
[28] | T. Demiral, I. Türkan, Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance, Environ. Exp. Bot. 53 (2005) 247–257. https://doi.org/10.1016/j.envexpbot.2004.03.017. |
[29] | M. Ashraf, M. R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot. 59 (2007) 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006. |
[30] | M. Boscaiu, C. Lull, J. Llinares, O. Vicente, H. Boira, Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species, J. Plant Ecol. 6 (2013) 177–186. https://doi.org/10.1093/jpe/rts017. |
[31] | S. Sripinyowanich, P. Klomsakul, B. Boonburapong, T. Bangyeekhun, T. Asami, H. Gu, T. Buaboocha, S. Chadchawan, Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress, Environ. Exp. Bot. 86 (2013) 94–105. https://doi.org/10.1016/j.envexpbot.2010.01.009. |
[32] | M. M. F. Mansour, E. F. Ali, Evaluation of proline functions in saline conditions, Phytochemistry. 140 (2017) 52–68. https://doi.org/10.1016/j.phytochem.2017.04.016. |
[33] | D. Hmidi, C. Abdelly, H. ur R. Athar, M. Ashraf, D. Messedi, Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima, Physiol. Mol. Biol. Plants. 24 (2018) 1017–1033. https://doi.org/10.1007/s12298-018-0601-9. |
[34] | D. H. Kohl, J. J. Lin, G. Shearer, K. R. Schubert, Activities of the pentose phosphate pathway and enzymes of proline metabolism in legume root nodules, Plant Physiol. 94 (1990) 1258–1264. https://doi.org/10.1104/pp.94.3.1258. |
[35] | R. P. Kandpal, C. S. Vaidyanathan, M. U. Kumar, K. S. K. Sastry, N. A. Rao, Alterations in the activities of the enzymes of proline metabolism in Ragi (Eleusine coracana) leaves during water stress, J. Biosci. 3 (1981) 361–370. https://doi.org/10.1007/BF02702623. |
[36] | M. A. Ahanger, R. M. Agarwal, N. S. Tomar, M. Shrivastava, Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L cultivar Kent), J. Plant Interact. 10 (2015) 211–223. https://doi.org/10.1080/17429145.2015.1056260. |
[37] | S. N. Siddiqui, S. Umar, M. Iqbal, Zinc-induced modulation of some biochemical parameters in a high- and a low-zinc-accumulating genotype of Cicer arietinum L. grown under Zn-deficient condition, Protoplasma. 252 (2015) 1335–1345. https://doi.org/10.1007/s00709-015-0767-8. |
[38] | M. A. Ahanger, R. M. Agarwal, Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation, Plant Physiol. Biochem. 115 (2017) 449–460. https://doi.org/10.1016/j.plaphy.2017.04.017. |
[39] | M. M. Hussein, N. H. Abou-Baker, The contribution of nano-zinc to alleviate salinity stress on cotton plants, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171809. |
[40] | V. Tavallali, M. Rahemi, M. Maftoun, B. Panahi, S. Karimi, A. Ramezanian, M. Vaezpour, Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in Pistachio, Sci. Hortic. (Amsterdam). 123 (2009) 272–279. https://doi.org/10.1016/j.scienta.2009.09.006. |
[41] | J. Cherif, N. Derbel, M. Nakkach, H. von Bergmann, F. Jemal, Z. Ben Lakhdar, Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress, J. Photochem. Photobiol. B Biol. 101 (2010) 332–339. https://doi.org/10.1016/j.jphotobiol.2010.08.005. |
[42] | M. P. Zago, P. I. Oteiza, The antioxidant properties of zinc: Interactions with iron and antioxidants, Free Radic. Biol. Med. 31 (2001) 266–274. https://doi.org/10.1016/S0891-5849(01)00583-4. |
[43] | H. Marschner, Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, London, 1995. |
[44] | S. Torabian, M. Zahedi, A. Khoshgoftarmanesh, Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress, J. Agric. Sci. Technol. 18 (2016) 1013–1025. |
[45] | W. Weisany, Y. Sohrabi, G. Heidari, A. Siosemardeh, K. Ghassemi-Golezani, Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.), Plant Omics. 5 (2012) 60–67. |
[46] | W. Weisany, Y. Sohrabi, G. Heidari, A. Siosemardeh, H. Badakhshan, Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.), J. Plant Nutr. 37 (2014) 2255–2269. https://doi.org/10.1080/01904167.2014.920386. |
[47] | S. Zafar, M. Y. Ashraf, S. Anwar, Q. Ali, A. Noman, Yield enhancement in wheat by soil and foliar fertilization of K and Zn under saline environment, Soil Environ. 35 (2016) 46–55. |
[48] | W. Jiang, X. H. Sun, H. L. Xu, N. Mantri, H. F. Lu, Optimal concentration of zinc sulfate in foliar spray to alleviate salinity stress in Glycine soja, J. Agric. Sci. Technol. 16 (2014) 445–460. |
[49] | H. Aebi, 3] Catalase in Vitro, Methods Enzymol. 105 (1984) 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3. |
[50] | Y. Nakano, K. Asada, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol. 22 (1981) 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232. |
[51] | R. L. Heath, L. Packer, Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys. 125 (1968) 189–198. https://doi.org/https://doi.org/10.1016/0003-9861(68)90654-1. |
[52] | M. S. A. Khan, M. A. Karim, M. M. Haque, M. M. Islam, A. J. M. S. Karim, M. A. K. Mian, Influence of salt and water stress on growth and yield of soybean genotypes, Pertanika J. Trop. Agric. Sci. 39 (2016) 167–180. |
[53] | N. Misra, A. K. Gupta, U. N. Dwivedi, Changes in free amino acids and stress protein synthesis in two genotypes of green gram under salt stress, J. Plant Sci. 5 (2010) 75–85. https://doi.org/10.3923/jps.2006.56.66. |
[54] | M. Ashraf, Some important physiological selection criteria for salt tolerance in plants, Flora. 199 (2004) 361–376. https://doi.org/10.1078/0367-2530-00165. |
[55] | H. Abeer, E. F. Abd-Allah, G. El-Didamony, S. Alwhibi Mona, D. Egamberdieva, P. Ahmad, Alleviation of adverse impact of salinity on faba bean (Vicia faba l.) by arbuscular mycorrhizal fungi, Pakistan J. Bot. 46 (2014) 1987–2003. |
[56] | N. Misra, A. K. Gupta, Effect of salt stress on proline metabolism in two high yielding genotypes of green gram, Plant Sci. 169 (2005) 331–339. https://doi.org/10.1016/j.plantsci.2005.02.013. |
[57] | W. Weisany, Y. Sohrabi, G. Heidari, A. Siosemardeh, K. Ghassemi-Golezani, Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress, Aust. J. Crop Sci. 5 (2011) 1441–1447. |
[58] | E. A. Ali, A. M. Mahmoud, Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil, Asian J. Crop Sci. 5 (2013) 33–40. https://doi.org/10.3923/ajcs.2013.33.40. |
[59] | A. Galal, Exogenous application of zinc mitigates the deleterious effects in eggplant grown under salinity stress, J. Plant Nutr. 42 (2019) 915–927. https://doi.org/10.1080/01904167.2019.1584221. |
[60] | E. Ebrahimian, A. Bybordi, Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower, J. Food, Agric. Environ. 9 (2011) 422–427. |
[61] | P. Y. Yousuf, A. Ahmad, A. H. Ganie, M. Iqbal, Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes, Environ. Sci. Pollut. Res. 23 (2016) 2391–2401. https://doi.org/10.1007/s11356-015-5441-3. |
[62] | P. Y. Yousuf, A. Ahmad, I. M. Aref, M. Ozturk, Hemant, A. H. Ganie, M. Iqbal, Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis, Protoplasma. 253 (2016) 1565–1575. https://doi.org/10.1007/s00709-015-0917-z. |
[63] | M. Zeeshan, M. Lu, S. Sehar, P. Holford, F. Wu, Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance, Agronomy. 10 (2020) 1–15. https://doi.org/10.3390/agronomy10010127. |
[64] | N. Mehla, V. Sindhi, D. Josula, P. Bisht, S. H. Wani, An introduction to antioxidants and their roles in plant stress tolerance, in: React. Oxyg. Species Antioxid. Syst. Plants Role Regul. under Abiotic Stress, Springer Singapore, 2017: pp. 1–23. https://doi.org/10.1007/978-981-10-5254-5_1. |
[65] | S. Pandey, D. Fartyal, A. Agarwal, T. Shukla, D. James, T. Kaul, Y. K. Negi, S. Arora, M. K. Reddy, Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase, Front. Plant Sci. 8 (2017) 581. https://doi.org/10.3389/fpls.2017.00581. |
[66] | H. Abbaspour, Effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline accumulation in Pistachio plants, J. Med. Plants Res. 6 (2012) 526–529. https://doi.org/10.5897/jmpr11.1449. |
[67] | A. Amiri, B. Baninasab, C. Ghobadi, A. H. Khoshgoftarmanesh, Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress, Photosynthetica. 54 (2016) 267–274. https://doi.org/10.1007/s11099-016-0078-0. |
[68] | M. R. Sofy, Effects of gibberellic acid, paclobutrazol and zinc on growth, physiological attributes and the antioxidant defencse system of soybean (Glycine max) under salinity stress, Int. J. Plant Res. 6 (2016) 64–87. |
[69] | K. A. Abdelaal, L. M. EL-Maghraby, H. Elansary, Y. M. Hafez, E. I. Ibrahim, M. El-Banna, M. El-Esawi, A. Elkelish, Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems, Agronomy. 10 (2020). https://doi.org/10.3390/agronomy10010026. |
[70] | I. Lalarukh, M. Shahbaz, Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus l.) under salt stress, Pakistan J. Bot. 52 (2020) 75–83. https://doi.org/10.30848/PJB2020-1(41). |
[71] | N. Tuteja, P. Ahmad, B. B. Panda, R. Tuteja, Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases, Mutat. Res. - Rev. Mutat. Res. 681 (2009) 134–149. https://doi.org/10.1016/j.mrrev.2008.06.004. |
[72] | G. Habibi, Hydrogen peroxide (H2O2) generation, scavenging and signaling in plants, in: Oxidative Damage to Plants Antioxid. Networks Signal., Elsevier Inc., 2014: pp. 557–584. https://doi.org/10.1016/B978-0-12-799963-0.00019-8. |
[73] | B. J. Alloway, Zinc in soils and crop nutrition. IZA, Brussels, Belgium and IFA, Paris, France, 2008. |
[74] | T. Kawano, N. Kawano, S. Muto, F. Lapeyrie, Retardation and inhibition of the cation-induced superoxide generation in BY-2 tobacco cell suspension culture by Zn2+ and Mn2+, Physiol. Plant. 114 (2002) 395–404. https://doi.org/10.1034/j.1399-3054.2002.1140309.x. |
[75] | P. Ahmad, M. Sarwat, N. A. Bhat, M. R. Wani, A. G. Kazi, L. S. P. Tran, Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies, PLoS One. 10 (2015) e0114571. https://doi.org/10.1371/journal.pone.0114571. |
[76] | P. Ahmad, A. Hashem, E. F. Abd-Allah, A. A. Alqarawi, R. John, D. Egamberdieva, S. Gucel, Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system, Front. Plant Sci. 6 (2015). https://doi.org/10.3389/fpls.2015.00868. |
[77] | M. M. Aldinary, The protective effect of presoaking seed and foliar treatments on growth and metabolism of Vigna sinensis L plants under salt stress condition, Al-Azhar University, 2015. |
APA Style
Sadia Afrin, Nahid Akhtar, Tahmina Khanam, Feroza Hossain. (2021). Alleviative Effects of Zinc on Biomass Yield and Antioxidative Enzymes Activity in Leaves of Soybean (Glycine max L.) Under Salt Stress. American Journal of Agriculture and Forestry, 9(3), 147-155. https://doi.org/10.11648/j.ajaf.20210903.18
ACS Style
Sadia Afrin; Nahid Akhtar; Tahmina Khanam; Feroza Hossain. Alleviative Effects of Zinc on Biomass Yield and Antioxidative Enzymes Activity in Leaves of Soybean (Glycine max L.) Under Salt Stress. Am. J. Agric. For. 2021, 9(3), 147-155. doi: 10.11648/j.ajaf.20210903.18
AMA Style
Sadia Afrin, Nahid Akhtar, Tahmina Khanam, Feroza Hossain. Alleviative Effects of Zinc on Biomass Yield and Antioxidative Enzymes Activity in Leaves of Soybean (Glycine max L.) Under Salt Stress. Am J Agric For. 2021;9(3):147-155. doi: 10.11648/j.ajaf.20210903.18
@article{10.11648/j.ajaf.20210903.18, author = {Sadia Afrin and Nahid Akhtar and Tahmina Khanam and Feroza Hossain}, title = {Alleviative Effects of Zinc on Biomass Yield and Antioxidative Enzymes Activity in Leaves of Soybean (Glycine max L.) Under Salt Stress}, journal = {American Journal of Agriculture and Forestry}, volume = {9}, number = {3}, pages = {147-155}, doi = {10.11648/j.ajaf.20210903.18}, url = {https://doi.org/10.11648/j.ajaf.20210903.18}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20210903.18}, abstract = {The present study was conducted to determine the interaction effects of zinc availability and salt stress in Bangladeshi soybean cultivar (cv. Shohag) whether zinc can alleviate the hazardous effects of salt stress or not. In this study, the plants are grown in zinc treated soil and also exposed to increasing (0, 50, 100, 150, 200, and 250 mM NaCl) levels of salinity. The results showed that the dry weight of root, stem, leaves, petioles and total dry weight were significantly reduced by salinity. The activities of antioxidant enzymes, lipid peroxidation, proline content were significantly affected by salt stress. Zinc supplementation helped the plants to cope with the salinity stress by improving the total dry weight. The antioxidant enzyme activities including catalase (CAT) and ascorbate peroxidase (APX) and proline content increased in response to salinity. The extent of lipid peroxidation noticed in salt stressed plants. However, zinc application enhanced catalase and ascorbate peroxidase activity as well as proline content in growing plants at different salt concentrations. The interaction between zinc and salinity significantly reduced lipid peroxidation. Application of zinc to salt-stressed plants ameliorates the salinity induced hazardous effects by enhancing the activities of antioxidant enzymes such as CAT and APX and Proline content.}, year = {2021} }
TY - JOUR T1 - Alleviative Effects of Zinc on Biomass Yield and Antioxidative Enzymes Activity in Leaves of Soybean (Glycine max L.) Under Salt Stress AU - Sadia Afrin AU - Nahid Akhtar AU - Tahmina Khanam AU - Feroza Hossain Y1 - 2021/06/07 PY - 2021 N1 - https://doi.org/10.11648/j.ajaf.20210903.18 DO - 10.11648/j.ajaf.20210903.18 T2 - American Journal of Agriculture and Forestry JF - American Journal of Agriculture and Forestry JO - American Journal of Agriculture and Forestry SP - 147 EP - 155 PB - Science Publishing Group SN - 2330-8591 UR - https://doi.org/10.11648/j.ajaf.20210903.18 AB - The present study was conducted to determine the interaction effects of zinc availability and salt stress in Bangladeshi soybean cultivar (cv. Shohag) whether zinc can alleviate the hazardous effects of salt stress or not. In this study, the plants are grown in zinc treated soil and also exposed to increasing (0, 50, 100, 150, 200, and 250 mM NaCl) levels of salinity. The results showed that the dry weight of root, stem, leaves, petioles and total dry weight were significantly reduced by salinity. The activities of antioxidant enzymes, lipid peroxidation, proline content were significantly affected by salt stress. Zinc supplementation helped the plants to cope with the salinity stress by improving the total dry weight. The antioxidant enzyme activities including catalase (CAT) and ascorbate peroxidase (APX) and proline content increased in response to salinity. The extent of lipid peroxidation noticed in salt stressed plants. However, zinc application enhanced catalase and ascorbate peroxidase activity as well as proline content in growing plants at different salt concentrations. The interaction between zinc and salinity significantly reduced lipid peroxidation. Application of zinc to salt-stressed plants ameliorates the salinity induced hazardous effects by enhancing the activities of antioxidant enzymes such as CAT and APX and Proline content. VL - 9 IS - 3 ER -