Termites play an important ecological role in ecosystems, mainly as decomposers. However, some species under certain conditions may become pests, causing damage in forests and cultivated fields. Termites are associated with native forests, forest plantations and croplands. Despite this, information regarding taxonomy, management, economic and ecological termite impacts for these land uses categories is not widely known. This study aimed to assess termite’s distribution, incidence, damage, diversity, and affinity in different land use categories. In circular 0.28ha plots in native vegetation and croplands and 1ha rectangular plots in forest plantations, termites capture was performed and, tree infestation assessed by visual inspection. Plot allocation was random-stratified by land use category. Twenty-one termite species, from nine genera and two families (Termitidae and Rhinotermitidae) were found. Of these species, fourteen, thirteen, ten and nine were respectively associated with miombo woodlands, fallow, cultivated areas and forest plantations, suggesting that species richness decreases with increasing habitat disturbance. Termite incidence is highest in plantation forests, followed by native woodlands, fallow and croplands. In forests, fallow areas, and croplands, damage severity was low, while in forest plantations it ranged from low to moderate. These results suggest that in miombo woodlands, fallow areas, and croplands, termite incidence does not necessarily imply economic damage. Economic losses in Eucalyptus plantations reach up to US$ 542.13/ha, reducing with increased plantation age, reaching 1.77 m3/ha in plantations two years old or less, and 0.73 m3/ha in 6-year age plantations. Efforts to combat termites are needed at early plantation stages.
Published in | American Journal of Agriculture and Forestry (Volume 10, Issue 1) |
DOI | 10.11648/j.ajaf.20221001.16 |
Page(s) | 33-44 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Croplands, Eucalyptus Plantations, Infestation, Miombo Woodlands, Termites
[1] | Campbell, B. M. (1996). The Miombo in transition: woodlands and welfare in Africa. In Campbell, B. (Ed.), The Miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/cifor/000465. |
[2] | FAO. (2010). Global Forest Resources Assement: Mozambique. Food and Agriculture Organization of the United Nations, pp. 54. |
[3] | Pirard, R., Dal Secco, L., & Warman, R. (2016). Do timber plantations contribute to forest conservation? In Environmental Science and Policy (Vol. 57, pp. 122–130). Elsevier Ltd. https://doi.org/10.1016/j.envsci.2015.12.010 |
[4] | Chamshama, S. A.., Nwonwu, F. O.., Lundgren, B., & Kowero, G.. (2009). Plantation Forestry in Sub Saharan Africa: Silvicultural, Ecological and Economic Aspects. Discovery and Innovation, 21 (3), 42–49. https://doi.org/10.4314/dai.v21i3.48210 |
[5] | WRN. (2013). Moçambique: plantações industriais de árvores prometem lucros para investidores, deixando impactos negativos para comunidades camponesas, pp. 23. |
[6] | FAO. (2015). Global Forest Resources Assessment 2015. In Desk Reference. Food and Agriculture Organization of the United Nations. |
[7] | Namujehe, G., & Orikiriza, L. J. B. (2013). Natural Durability of Eucalyptus Clones against Termite Attack. International Journal of Sciences: Basic And\rApplied Research, 10 (1), 176–183. |
[8] | Nyeko, Philip, & Olubayo, F. M. (2005). Participatory assessment of farmers’ experiences of termite problems in agroforestry in Todoro district, Uganda. Agricultural Research and Extension Network, 143, 20. |
[9] | Nair, K. S. S. (2001). Pest outbreaks in tropical forest plantations: is there a greater risk for exotic tree species? In K. S. S. Nair (Ed.), Pest outbreaks in tropical forest plantations: is there a greater risk for exotic tree species? Center for International Forestry Research (CIFOR). https://doi.org/10.17528/cifor/000984. |
[10] | Adekayode, F. O., & Ogunkoya, M. O. (2009). Comparative study of clay and organic matter content of termite mounds and the surrounding soils. African Crop Science Conference Proceedings, 9, 379–384. |
[11] | Amaral, R. D. D. A. M. (2002). Diagnóstico da ocorrência de cupins xilófagos em árvores urbanas do bairro de higienópolis, na árvores urbanas do bairro de Higienópolis. USP, pp. 85. |
[12] | Debelo, D. G., & Degaga, E. G. (2017). Study on termite damage to different species of tree seedlings in the Central Rift Valley of Ethiopia. African Journal of Agricultural Research, 12 (3), 161–168. https://doi.org/10.5897/ajar2016.11831 |
[13] | Mill, A. E. (1992). Termites as agricultural pests in Amazonia, Brazil. Outlook on Agriculture, 21 (1), 41–46. https://doi.org/10.1177/003072709202100107 |
[14] | Lee, C. Y. (2002). Subterranean termite pests and their control in the urban environment in Malaysia. Sociobiology, 40 (1), 3–9. |
[15] | Beltrão, F. L. S. (2012). Ocorrência e Preferência Alimentar de Térmitas. UFRRJ, pp. 40. |
[16] | Shiday, B. M.., Nkunika, P. O. Y., Sileshi, G. W., French, J. R. J., Nyeko, P., & Jain, S. (2011). Potential impact of climate change on Termite Distribution in Africa. British Journal of Environment and Climate Change, 1 (4), 172–189. https://doi.org/10.1115/OMAE2011-50162. |
[17] | Amaral-Castro, N. R., Zanetti, R., Moraes, J. C., Zanuncio, J. C., Freitas, G. D., & Santos, M. S. (2004). Species of soil inhabiting termites (Insecta: Isoptera) collected in Eucalyptus plantations in the State of Minas Gerais, Brazil. Sociobiology, 44 (3), 717–725. |
[18] | Nair KSS. (2007). Tropical Forest Insect Pests: Ecology, Impact, and Management. Cambridge. New York, pp. 424. |
[19] | Silveira, A. G., Santini, E. J., Trevisan, R., Cancian, L. C., & Mariano, L. G. (2015). Ocorrência e Danos de Térmitas na Madeira de Acacia mearnsii (Fabaceae) em Dois campos de apodrecimento. Rev. Inst. Flor., 27 (2), 183–189. |
[20] | Jimu, L., & Mujuru, L. (2017). Pathogens and Pests Threatening Plantation Forestry in Zimbabwe. East African Agricultural and Forestry Journal, 82, 2–4. |
[21] | MAEa. (2005) Perfil do distrito de Gondola, Província de Manica. Maputo, Mozambique: Ministério de Administração Estatal, pp. 50. |
[22] | MAEb. (2005). Perfil do distrito de Muanza, Província de Sofala. Maputo, Mozambique: Ministério de Administração Estatal, pp. 45. |
[23] | INE. (2020). Anuário Estatístico 2019- Moçambique. |
[24] | Pollini, J. (2014). Slash-and-burn agriculture Synonyms: shifting cultivation, swidden cultivation. Encyclopedia of Food and Agricultural Ethics, January. https://doi.org/10.1007/978-94-007-0929-4 |
[25] | CEAGRE & Winrock Internacional. (2016). Identificação e análise dos agentes e causas directas e indirectas de desmatamento e degradação florestal em Moçambique. 2016, pp 36. |
[26] | Fundo Nacional de Desenvolvimento, Sustentável. (2019). Uso e Cobertura da Terra para o ano de 2016. Monitoria Relatório e Verificação, REDD+. Maputo, Mozambique: FNDS, MITADER. |
[27] | Mavie E. B. (2012). Estimativas de Perdas de Carbono Associadas com Mudanças da Cobertura Florestal. Maputo, Mozambique: UEM/FAEF, pp. 56. |
[28] | Dosso, K., Deligne, J., Yéo, K., Konaté, S., & Linsenmair, K. E. (2013). Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto Reserve in central Côte d’Ivoire. Journal of Insect Conservation, 17 (5), 1047–1057. https://doi.org/10.1007/s10841-013-9588-2. |
[29] | Eggleton, P., Homathevi, R., Jeeva, D., Jones, D. T., Davies, R. G., & Maryati, M. (1997). The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica, 3, 119–128. |
[30] | Mello, A. P. De, Guedes, B., Avany, M., & Gusmao, B. (2014). Termite infestation in historical buildings and residences in the semiarid region of Brazil. Sociobiology, 6 (3), 318–323. https://doi.org/10.13102/sociobiology.v61i3.318-323. |
[31] | Mckinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217. |
[32] | Aune-Lundberg, L., & Geir-Harald, S. (2014). Comparison of variance estimation methods for use with two-dimensional systematic sampling of land use/land cover data. Environmental Modelling & Software, 61, 87–97. |
[33] | Nyeko, P., Mutitu, E. K., & Day, R. K. (2009). Eucalyptus infestation by Leptocybe invasa in Uganda. African Journal of Ecology, 47, 299–307. |
[34] | Sobrinho R. B., Mesquita A. L. M., Hawerroth F. J., Kavati R., Silva K. S. (2011). Identifcação e Monitoramento de Pragas na Produção Integrada da Gravioleira. Fortaleza, Brazil: Empresa Brasileira de Pesquisa Agropecuária (Embrapa). pp. 26. |
[35] | Bonetti R. Z. (1988). Estimativa do Nível de Danos Económicos Causado por Formigas Cortadeiras em Eucaliptais. Minas Gerais, Brasil: Universidade de Viçosa, pp. 92. |
[36] | Andersen, A. N. (1991). Sampling communities of ground-foraging ants: Pitfall catches compared with quadrat counts in an Australian tropical savanna. Australian Jourtial of Ecology, 16, 273-279. |
[37] | Magurran A. (2004). Measuring Biological Diversity. Oxford: Blackwell Publishing Company. 256 p. |
[38] | Dawyndt, P., Meyer, H., & Baets, B. (2005). UPGMA clustering revisited: A weight-driven approach to transitive approximation. International Journal of Approximate Reasoning, 42, 174–191. |
[39] | Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. |
[40] | Hsieh, T. C., Ma, K. H., & Chao, A. (2016). Application of iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution. British Ecological Society, 7, 1451–1456. |
[41] | Evangelista A. L. (2009). Impacto do fipronil sobre a comunidade de cupins (Insecta: Isoptera) em áreas cultivadas com eucalipto no Cerrado. Lavras, Brasil: Universidade Federal de Lavras, pp. 50. |
[42] | Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93 (12), 2533–2547. |
[43] | Nduwarugira, D., Mpawenayo, B., & Roisin, Y. (2016). The role of high termitaria in the composition and structure of the termite assemblage in Miombo woodlands of southern Burundi. The Royal Entomological Society, Insect Conservation and Diversity. https://doi.org/doi:10.1111/icad.12207y. |
[44] | Donovan, S., Eggleton, P., & Bignell, D. E. (2002). Gut content analysis and a new feeding group classification termites. Ecological Entomology, 26 (4), 356–366. https://doi.org/http://dx.doi.org/10.1046/j.1365-2311.2001.00342.x. |
[45] | Aanen, D. K., & Eggleton, P. (2005). Fungus-Growing Termites Originated in African Rain Forest. Current Biology, 15 (9), 851–855. |
[46] | Davies, A. B., Eggleton, P., van Rensburg, B. J., & Parr, C. (2013). Assessing the relative efficiency of termite sampling methods along a rainfall gradient in African savannas. Biotropica, 45, 474–479. https://doi.org/doi:10.1111/btp.12030. |
[47] | Koné, N. A., Silué, K. S., Konaté, S., & Linsenmair, K. E. (2018). Determinants of Termite Assemblages’ Characteristics within Natural Habitats of a Sudano-Guinean Savanna (Comoe National Park, Côte d’Ivoire). Insects, 9, 189. https://doi.org/doi:10.3390/insects9040189. |
[48] | Muvengwi, J., Mbiba, M., H. G. T, N., Nyamadzawo, G., & Nhokovedzo, P. (2017). Termite diversity along a land use intensification gradient in a semi-arid savanna. J Insect Conserv, 40, 380–391. https://doi.org/.Doi:10.1007/s10841-017-0019-7. |
[49] | Jones, D. T., Susilo, F. X., Bignell, D. E., Hardiwinoto, S., Gillison, A. N., & Eggleton, P. (2003). Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Eco, 2003. |
[50] | Barros, E., Pashanasi, B., Constantino, R., & Lavelle, P. (2002). Effects of land-use system on the soil macrofauna in Western Brazilian Amazonia. Biol Fertil Soils, 35, 338–347. |
[51] | Eggleton, P., Bignell, D. E., Hauser, S., Dibog, L., Norgrove, L., & Madong, B. (2002). Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ, 90, 189–202. https://doi.org/doi:10.1016/ S0167-8809(01)00206-7. |
[52] | Santos, J. C. (2014). Distribuição espacial e plano de amostragem de Syntermites spp (Isóptera Termitidae) em áreas de implementação de eucalipto no Bioma Cerrado. Universidade Federal de Lavras, pp. 58. |
[53] | Bandeira, A. G., Vasconcellos, A., Silva, M. P., & Constantino, R. (2003). Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga domain, Brazil. Sociobiology, 42 (1), 117–127. |
[54] | Davies, R. G., Eggleton, P., Dibog, L., Lawton, L. H., Bignell, D. E., Brauman, C. H., Nunes, L., Holt, J., & Rouland, C. (1999). Successional response of a tropical forest termite assemblage to experimental habitat perturbation. Journal of Applied Ecology, 36, 946-962. |
[55] | Altieri, M. A., Silva, E. N., & Nicholls, C. I. (2003). A biodiversidade e seu papel ecológico na agricultura. In A. M. A., E. N. Silva, & N. C. I. (Eds.), O papel da biodiversidade no manejo de pragas, pp. 17–23. |
[56] | Cumbula, S. (2021). Diversidade de térmites nas florestas de miombo: Efeito dos factores ambientais e antropogénicos. Maputo, Mozambique: UEM/FAEF, pp. 77. |
[57] | Filho, E. B, Mariconi, F., M. D. A, Wilcken, C. F., Dietrich, C. R. R. C, Costa, V. A., Chaves, L. E. L., & Cerignoni, J. A. (1993). Manual de pragas em florestas: cupins ou térmitas. Third edit. Brasil.: IPEF/SIF, pp. 56. |
[58] | Valério, J. R, Lapointe, S. L, Kelemu, S., Fernandes, C. D, Morales, F. J. (1996). Pest and Diseases of Brachiaria Species. In: Miles JW, Maass BL, Valle CB, editors. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT), pp. 87–105. |
[59] | Materu, C., Yarro, J., & Nyundo, B. (2013). Termite (Isoptera) Assemblages in Rufiji District Tanzania. Journal of Biology, Agriculture and Healthcare, 3 (14). |
[60] | Neoh, K. B., Bong, L. J., Itoh, A. M. M., Kozan, O., & Yoshimura, Y. T. T. (2015). Understanding the impact of fire on termites in degraded tropical peatlands and the mechanisms for their ecological success: current knowledge and research needs. The Ecological Society. https://doi.org/DOI10.1007/s11284-015-1289-8 |
[61] | Ackerman, I. L., Constantino, R., Gauch, J. H. G., Lehmann, J., J., S., Riha, S. J., & Fernandes, E. C. M. (2009). Termite (Insecta: Isoptera) Species Composition in a Primary Rain Forest and Agroforests in Central Amazonia. Biotropica, 41 (2), 226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.x. |
[62] | Kone, M., Konate, S., Yeo, K., Kouassi, P. K., & Linsenmair, K. E. (2012). Diversity and abundance of terrestrial ants along a gradient of land use intensification in a transitional forest-savannah zone of Côte d’Ivoire. Journal of Applied Biosciences, 29, 1809 – 1827. |
[63] | Filho, E. B., Fontes, L. R. (1995). Aspectos actuais da biologia e controle de cupins. Piracicaba, Brasil: Fealq, pp. 184. |
[64] | Sekamatte, M. B., Ogenga-Latigo, M., & Russell-Smith, A. (2003). Effect of maize– legume intercrops on termite damage to maize, activity of predatory ants and maize yield in Uganda. Crop Protect, 22, 87–93. |
[65] | Mugerwa, S. (2015). Magnitude of the termite problem and its potentialanthropogenic causes in Nakasongola district of Uganda. Japanese Society of Grassland Science, 61, 75–82. |
[66] | Jactel, H., Brockeroff, E., & Duelli, P. (2005). A test of the biodiversity–stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and reexamination of responsible factors. Springer-Verlag, 235–62. |
[67] | Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol, 45, 175–201. |
[68] | Sales, M. J. D., Matos, W. C., Reis, Y. T., & Ribeiro, G. T. (2010). Frequência e riqueza de cupins em áreas de plantio de eucalipto no litoral Norte da Bahia. Pesquisa Agropecuária Brasileira. |
[69] | Osipitan, A. A., Jegede, T. O., & Adekanmbi, D. I. Ogunbanwo, I. A. (2013). Assessment of Datura metel, local soap and garlic (Allium sativum) in the management of Termite (Termitidae: Isoptera). Munis Entomology & Zoology., 407–414. |
[70] | Adedeji, G. A., Emerhi, E. A., & Nyenke, E. (2015). Incidence and Severity of Termites Infestations on Azadirachta indica A. Juss. Used as Avenue Trees in University of Port Harcourt, Nigeria. Journal of Agriculture and Veterinary Science, 8, 123–126. |
[71] | Gallio, E., Machado, S. F., Silva, F. J. T., Cruz, N. D., & Gatto, D. A. (2018). Caracterização de propriedades tecnológicas de quatro folhosas deterioradas por térmitas do gênero Nasutitermes. Nativa, Sinop, 6 (especial), 763–766. |
[72] | Khan, M. A., Ahmad, W., & Paul, B. (2018). Ecological impacts of termites. In Termites and Sustainable Management. Biology, Social Behaviour and Economic Importance, 1, 201–216. |
[73] | Adamtey, N., Musyoka, M. W., Zundel, C., Cobo, G. J., Karanja, E., Fiaboe, K. K. M., Muriuki, A., Mucheru-Muna, M., Vanlauwe, B., Berst, E., Messmer, M. M., Gattinger, A., Bhullar, G. S., Cadisch, G., Fliessbach, A., Mader, P., Niggli, U., & Foster, D. (2016). Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agriculture, Ecosystems & Environment, 235, 61–79. |
[74] | Anyango, J. J., Bautze, D., Fiaboe, K. K. M., Lagat, Z. O., Muriuki, A. W., Stöckli, S., Riedel, J., K., O. G., Musyoka, M. W., Karanja, E. N., & Adamtey, N. (2020). The impact of conventional and organic farming on soil biodiversity conservation: a case study on termites in the long-term farming systems comparison trials in Kenya. BMC Ecology., 2020 (20), 13. |
[75] | Zanetti, R., Castro, N. R. A., Moraes, J. C., Zanuncio, J. C., Olieira, A. C., & Dias, N. (2005). Estimation of Wood Volume Losses by Heartwood Termites (Insecta: Isoptera) in Eucalyptus Plantations in the State of Minas Gerais, Brazil. Sociobiology, 45 (3), 610–630. |
[76] | Anjos N. (2004). Cupins-de-raiz (Isoptera) em culturas florestais. In: Congresso Brasileiro de Entomologia. Brasil.: Empresa Brasileira de Pesquisa Agropecuária (Embrapa), pp. 110. |
APA Style
Nhiuane Osorio Eufrasio Jose, Cumbula Sergio, Tetine Belincia, Sidumo Ivete, Buene Cesaltina, et al. (2022). Termites Distribution and Diversity in Different Land Uses in Mozambique: Implications for Management. American Journal of Agriculture and Forestry, 10(1), 33-44. https://doi.org/10.11648/j.ajaf.20221001.16
ACS Style
Nhiuane Osorio Eufrasio Jose; Cumbula Sergio; Tetine Belincia; Sidumo Ivete; Buene Cesaltina, et al. Termites Distribution and Diversity in Different Land Uses in Mozambique: Implications for Management. Am. J. Agric. For. 2022, 10(1), 33-44. doi: 10.11648/j.ajaf.20221001.16
AMA Style
Nhiuane Osorio Eufrasio Jose, Cumbula Sergio, Tetine Belincia, Sidumo Ivete, Buene Cesaltina, et al. Termites Distribution and Diversity in Different Land Uses in Mozambique: Implications for Management. Am J Agric For. 2022;10(1):33-44. doi: 10.11648/j.ajaf.20221001.16
@article{10.11648/j.ajaf.20221001.16, author = {Nhiuane Osorio Eufrasio Jose and Cumbula Sergio and Tetine Belincia and Sidumo Ivete and Buene Cesaltina and Mondlane Marcela and Chirinzane-Manhica Cacilda and Rombe Bandeira Romana}, title = {Termites Distribution and Diversity in Different Land Uses in Mozambique: Implications for Management}, journal = {American Journal of Agriculture and Forestry}, volume = {10}, number = {1}, pages = {33-44}, doi = {10.11648/j.ajaf.20221001.16}, url = {https://doi.org/10.11648/j.ajaf.20221001.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20221001.16}, abstract = {Termites play an important ecological role in ecosystems, mainly as decomposers. However, some species under certain conditions may become pests, causing damage in forests and cultivated fields. Termites are associated with native forests, forest plantations and croplands. Despite this, information regarding taxonomy, management, economic and ecological termite impacts for these land uses categories is not widely known. This study aimed to assess termite’s distribution, incidence, damage, diversity, and affinity in different land use categories. In circular 0.28ha plots in native vegetation and croplands and 1ha rectangular plots in forest plantations, termites capture was performed and, tree infestation assessed by visual inspection. Plot allocation was random-stratified by land use category. Twenty-one termite species, from nine genera and two families (Termitidae and Rhinotermitidae) were found. Of these species, fourteen, thirteen, ten and nine were respectively associated with miombo woodlands, fallow, cultivated areas and forest plantations, suggesting that species richness decreases with increasing habitat disturbance. Termite incidence is highest in plantation forests, followed by native woodlands, fallow and croplands. In forests, fallow areas, and croplands, damage severity was low, while in forest plantations it ranged from low to moderate. These results suggest that in miombo woodlands, fallow areas, and croplands, termite incidence does not necessarily imply economic damage. Economic losses in Eucalyptus plantations reach up to US$ 542.13/ha, reducing with increased plantation age, reaching 1.77 m3/ha in plantations two years old or less, and 0.73 m3/ha in 6-year age plantations. Efforts to combat termites are needed at early plantation stages.}, year = {2022} }
TY - JOUR T1 - Termites Distribution and Diversity in Different Land Uses in Mozambique: Implications for Management AU - Nhiuane Osorio Eufrasio Jose AU - Cumbula Sergio AU - Tetine Belincia AU - Sidumo Ivete AU - Buene Cesaltina AU - Mondlane Marcela AU - Chirinzane-Manhica Cacilda AU - Rombe Bandeira Romana Y1 - 2022/02/09 PY - 2022 N1 - https://doi.org/10.11648/j.ajaf.20221001.16 DO - 10.11648/j.ajaf.20221001.16 T2 - American Journal of Agriculture and Forestry JF - American Journal of Agriculture and Forestry JO - American Journal of Agriculture and Forestry SP - 33 EP - 44 PB - Science Publishing Group SN - 2330-8591 UR - https://doi.org/10.11648/j.ajaf.20221001.16 AB - Termites play an important ecological role in ecosystems, mainly as decomposers. However, some species under certain conditions may become pests, causing damage in forests and cultivated fields. Termites are associated with native forests, forest plantations and croplands. Despite this, information regarding taxonomy, management, economic and ecological termite impacts for these land uses categories is not widely known. This study aimed to assess termite’s distribution, incidence, damage, diversity, and affinity in different land use categories. In circular 0.28ha plots in native vegetation and croplands and 1ha rectangular plots in forest plantations, termites capture was performed and, tree infestation assessed by visual inspection. Plot allocation was random-stratified by land use category. Twenty-one termite species, from nine genera and two families (Termitidae and Rhinotermitidae) were found. Of these species, fourteen, thirteen, ten and nine were respectively associated with miombo woodlands, fallow, cultivated areas and forest plantations, suggesting that species richness decreases with increasing habitat disturbance. Termite incidence is highest in plantation forests, followed by native woodlands, fallow and croplands. In forests, fallow areas, and croplands, damage severity was low, while in forest plantations it ranged from low to moderate. These results suggest that in miombo woodlands, fallow areas, and croplands, termite incidence does not necessarily imply economic damage. Economic losses in Eucalyptus plantations reach up to US$ 542.13/ha, reducing with increased plantation age, reaching 1.77 m3/ha in plantations two years old or less, and 0.73 m3/ha in 6-year age plantations. Efforts to combat termites are needed at early plantation stages. VL - 10 IS - 1 ER -