Maize cultivation plays an important socio-economic role in Côte d’Ivoire. It is the staple food of many Ivorian populations. The national production, from around 661,285 tonnes in 2013, increased to 1,025,000 tonnes in 2017. However, maize cultivation suffers from several problems, including the decline in soil fertility. To overcome these constraints, the use of arbuscular mycorrhizal fungi (AMF) could be useful. These fungi improve water and mineral nutrition as well as plants’ resistance to biotic and abiotic stresses. Before any breeding program, it is necessary to carry out a study of the diversity of AMF and their identification. Soil samples were collected from 20 localities in three regions of Côte d'Ivoire for the isolation of mycorrhizal fungal spores. Spores densities in 100 g of soil were respectively high (138.66 to 398 spores) in Bouaflé (Marahoué) and low (65.66 to 211 spores) in the soil samples from Bouaké (Gbêkê) and Ferké (Tchologo). Yellowish spores were the most abundant (65.37%). The same is true for spores of 90 μm diameter (62.72%). On the basis of the morphometric characteristics of the spores, 17 genres of AMF belonging to 13 families were identified in all the analyzed corn rhizospheres. However, the family of Glomeraceae represented by the genres Glomus, Funneliformis, Septoglomus, and Rhizophagus as well as the families of Acaulosporaceae and Gigasporaceae represented, respectively, by the genres Acaulospora and Gigaspora are the most abundant. These data allow the identification of the types of AMF and their optimum densities to be used for soil amendment in order to improve corn crop yields.
Published in | American Journal of Agriculture and Forestry (Volume 10, Issue 5) |
DOI | 10.11648/j.ajaf.20221005.14 |
Page(s) | 170-180 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Arbuscular Mycorrhizal Fungi, Maize, Spore Diversity, Soil Fertility, Côte d’Ivoire
[1] | Fortin, J. A., Plenchette, C., & Piché, Y. (2011). MYCORRHIZAE: Boom in the New Green Revolution, Éditions Quae. Québec, CANADA. |
[2] | Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis, Soil Sci. Soc. Am. J., vol. 137, p. 605. doi: 10.1097/00010694-198403000-00011. |
[3] | Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure, New Phytologist, vol. 171, no. 1. pp. 41–53. doi: 10.1111/j.1469-8137.2006.01750.x. |
[4] | Powell, J. R., & Rillig, M. C. (2018). Tansley review Biodiversity of arbuscular mycorrhizal fungi and ecosystem function, New Phytol., pp. 1–17. doi: 10.1111/nph.15119. |
[5] | Van Der Heijden, M. G. A. (2010). Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems, Ecology, vol. 91, no. 4, pp. 1163–1171. doi: 10.1890/09-0336.1. |
[6] | Droh, G., Kouassi, A. B., Kouadjo, Z. C. G., Zeze, A., Nguetta, A. S., & Sanders, I. R. (2016). Effect of two AMF on growth of cocoa seedlings (Theobroma cacao L.) in greenhouses, Glob. J. Adv. Res., vol. 3, no. 3, pp. 157–164. |
[7] | Selosse, M.-A., Richard, F., He, X. &. Simard, S. W. (2006). Mycorrhizal networks: dangerous connections?, Trends Ecol. Evol., vol. 21, no. 11, pp. 621–628. doi: 10.1016/j.tree.2006.07.003. |
[8] | Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility, Agric. Ecosyst. Environ., vol. 116, no. 1–2, pp. 72–84. doi: 10.1016/J.AGEE.2006.03.011. |
[9] | Liu, Y., Mao L., Li J., Shi G., Jiang S., Ma X., An L., Du G., & Feng H. (2014). Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi, Plant Soil, vol. 386, no. 1–2, pp. 341–355. doi: 10.1007/s11104-014-2261-z. |
[10] | Bationo A., Waswa B., Abdou A., Bado BV., Bonzi M., Iwuafor E., Kibunja C., Kihara J., Mucheru M., Mugendi D., Mugwe J., Mwale C., Okeyo J., Olle A., Roing K., & Sedogo M. (2012). Overview of Long Term Experiments in Africa, Lessons Learn. from Long-term Soil Fertil. Manag. Exp. Africa, vol. 9789400729384, pp. 1–26. doi: 10.1007/978-94-007-2938-4_1. |
[11] | Perpétue, M., Koffi, N., Fattoh, E., & Vincent, K. (2019). Assessment of the impact of pesticide use in urban and periurban agriculture in Abidjan, Côte d’Ivoire, Int. J. Biol. Chem. Sci., vol. 13, no. 6, pp. 2824–2837. |
[12] | Öpik M., Vanatoa A., Vanatoa E., Moora M., Davison J., Kalwij J. M., Reier Ü., & Zobel M. (2010). The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota), New Phytol, vol. 188, no. 1, pp. 223–241. doi: 10.1111/j.1469-8137.2010.03334.x. |
[13] | Thombo, M. M. (2013). Detection and enumeration of mycorrhizal strains in the experimental site of the University of Kisangani in SimiSimi, R. D Congo. Master's thesis 39 p. |
[14] | Voko Bi D. R. R., Ahonzo-Niamke S. L., & Zézé A. (2013). Abundance and diversity of Arbuscular mycorrhizal fungal (AMF) communities associated with cassava (Manihot esculenta Crantz) rhizosphere in Abengourou, East Côte dIvoire, J. Ecol. Nat. Environ., vol. 5, no. 11, pp. 360–370. doi: 10.5897/JENE2013.0407. |
[15] | Sidibé D., Fofana I. J., Silué S., Diarassouba N., Zézé A., & Nguetta S. P. A. (2016). Evaluation of Symbiosis Effect of Some Arbuscular mycorrhizal Fungi on Growth of Yams (Dioscorea Alata) on Experimental Conditions,” J. Pharm. Chem. Biol. Sci., vol. 3, pp. 346–357. |
[16] | Mohammedi, S. (2018). Biodiversity and ability of arbuscular mycorrhizal fungi isolated from the palm groves of Ouargla to mycorrhize wheat and barley, Kasdi Merbah Ouargla University, Algeria, 48 p. |
[17] | Bossou L. D. R., Houngnandan H. B., Adandonon A., & Zoundji C. (2019). Diversity of arbuscular mycorrhizal fungi associated with maize cropping (Zea mays L.) in Benin, vol. 13, no. pp. 597–609. |
[18] | Droh, G. (2017). Genetic diversity of arbuscular mycorrhizal fungi associated with the cocoa tree (Theobroma cacao L.) of the Côte d’Ivoire: case of the rhizosphere of cocoa trees in the regions of Gôh, Nawa and San-Pédro. Félix Houphouët Boigny University, UFR Biosciences, 196 p. |
[19] | Séry D. J. M., van Tuinen D., Drain A., Mounier A., & Zézé A. (2018). The genus Rhizophagus dominates arbuscular mycorrhizal fungi communities in contrasted cassava field soils in Côte d’Ivoire, Rhizosphere, vol. 7, pp. 8–17. doi: https://doi.org/10.1016/j.rhisph.2018.06.007. |
[20] | Rincón C., Droh G., Villard L., Masclaux F. G., N’guetta A., Zeze A., & Sanders I. R. (2021). Hierarchical spatial sampling reveals factors influencing arbuscular mycorrhizal fungus diversity in Côte d’Ivoire cocoa plantations, Mycorrhiza, vol. 31, no. 3, pp. 289–300. doi: 10.1007/s00572-020-01019-w. |
[21] | Abdou, M. M. (2015). Acacia senegal (L.) Willd. Symbiotic potential, effect on soil fertility and productivity of associated crops in the different gum basins in Niger. Abdou Moumouni University, Niger. Doctoral thesis. |
[22] | Manga, A., Ndiaye, F., & Diop, T. A. (2018). The fungus Glomus aggregatum improves the mineral nutrition of Acacia seyal subjected to progressive saline stress, Int. J. Biol. Chem. Sci., vol. 11, no. 5, p. 2352. doi: 10.4314/ijbcs.v11i5.32. |
[23] | Shen, S. K., & Wang, Y. H. (2011). Arbuscular mycorrhizal (AM) status and seedling growth response to indigenous AM colonisation of Euryodendron excelsum in China: implications for restoring an endemic and critically endangered tree,” Aust. J. Bot., vol. 59, no. 5, pp. 460–467. doi: 10.1071/BT11002. |
[24] | Dalpé, Y. (2005). Mycorrhizae: a potential tool for plant protection but not a panacea, in Phytoprotection, vol. 86, no. 1, pp. 53–59. doi: 10.7202/011715ar. |
[25] | Lenoir I., Fontaine J., & Lounès-Hadj Sahraoui, A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review, Phytochemistry, vol. 123, pp. 4–15. doi: 10.1016/j.phytochem.2016.01.002. |
[26] | Labidi S., Jeddi B. F., Tisserant B., Debiane D., Rezgui S., Grandmougin-Ferjani A., & Lounès-Hadj Sahraoui, A. (2012). Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress., Mycorrhiza, vol. 22, no. 5, pp. 337–345. doi: 10.1007/s00572-011-0405-z. |
[27] | Koné A. W., Kassin E. K., Ettien J. B. D., Konaté Z., & Gnahoua G. M. (2020). Soil carbon in forest and savanna areas in Côte d'Ivoire, in Carbone des sols en Afrique, no. September, R. T. et B. M. Chevallier T., Ed. Marseille, pp. 193–210. |
[28] | Goula, B., Brou, K., Brou, T., Savané, I., Vamoryba, F., & Bernard, S. (2007). Estimation of exceptional daily rainfall in the tropics: the case of Côte d'Ivoire by comparison of the Lognormale and Gumbel laws, J. des Sci. Hydrol., vol. 52, no. 1, pp. 49–67. |
[29] | Ahossane, K. (2010). Republic of Côte d'Ivoire: Second National Communication under the United Nations Framework Convention on Climate Change, March 9, 2010 in Abidjan (Côte d’Ivoire). 217 p,. [Online]. Available: http://unfccc.int/resource/docs/natc/cotnc2.pdf. |
[30] | Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., vol. 37, no. 1, pp. 29–38. doi: 10.1097/00010694-193401000-00003. |
[31] | Bray, R. H., & Kurtz, d. L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils, Soil Sci., vol. 59, no. 1, pp. 39–45. doi: 10.1097/00010694-194501000-00006. |
[32] | Demay, F.(1995). Total nitrogen determination by Kjeldahl method, Bioanalyses, no. ll. pp. 3–5. |
[33] | Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, trans. Br. Mycol. Soc., vol. 46, no. 2, pp. 235–244. doi: 10.1016/S0007-1536(63)80079-0. |
[34] | Johnson, N. C., Zak, D. R., Tilman, D., & Pfleger, F. L. (1991). Dynamics of vesicular-arbuscular mycorrhizae during old field succession, Oecologia, vol. 86, no. 3, pp. 349–358. doi: 10.1007/BF00317600. |
[35] | INVAM. (2021). International culture collection of VA Mycorrhizal fungi. Consulted on July 15, 2021. http/www.invam.caf.wvu.edu. |
[36] | Castelli M., Urcoviche R. C., Gimenes R. M. T. & Alberton O. (2014). Arbuscular mycorrhizal fungi diversity in maize under different soil managements and seed treatment with fungicide, J. Food, Agric. Environ., vol. 12, no. 2, pp. 486–491. |
[37] | Voko Bi D. R. R., Ahonzo-Niamke S. L., Zézé A. (2013). Influence of cassava soils physicochemical properties on the abundance and diversity of arbuscular mycorrizal fungi communities’ in Azaguié agroecological area, south-east Côte d’Ivoire, Agron. Africain, vol. 25, no. 3, pp. 251–264. |
[38] | Bossombra, A. L. A., Généfol, O., &. Lezin, B. E. (2019). Evaluation of the mycorrhizal status of Ceiba pentandra and Tieghemella heckelii trees in the Bingerville Botanical Garden in Côte d'Ivoire, no. L, pp. 14092–14105. |
[39] | Zézé, A., Brou, Y. C., Medich, A., Marty, F., & Zeze, A. Molecular characterisation of a mycorrhizal inoculant that enhances Trifolium alexandrium resistance under water stress conditions, African J. Biotechnol., vol. 6, no. 13, pp. 1524–1528. |
[40] | Hu, Y., Rillig, M. C., Xiang, D., Hao, Z. & Chen, B. (2013). Changes of AM Fungal Abundance along Environmental Gradients in the Arid and Semi-Arid Grasslands of Northern China,” PLoS One, vol. 8, no. 2, pp. 1–10. doi: 10.1371/journal.pone.0057593. |
[41] | Egli, S., & Brunner, I. (2002). Mycorrhizae: A fascinating biocenosis in the forest, Notice for the patrician. pp. 1–8. doi: 1012-6554. |
[42] | Kodjo, S., Adjanohoun, A., Kpagbin, G., & Gotoechan, H. (2013). Participative diagnosis of the soil fertility of maize (Zea mays) production’s farm in the departments of Zou and Collines in Benin, Bull. la Rech. Agron. du Bénin, vol. Special number, pp. 39–53. |
[43] | Meddich, A., El Mokhtar, M. A., Wahbi, S., & Boumezzough, A. (2017). Evaluation of the mycorrhizal potential in relation with the physico-chemical properties of soils in Moroccan palm groves (Marrakech and Tafilalet), Cah. Agric., vol. 26, no. 4, pp. 1–7. doi: 10.1051/cagri/2017044. |
[44] | Tawaraya, K. (2003). Arbuscular mycorrhizal dependency of different plant species and cultivars, Soil Sci. Plant Nutr., vol. 49, no. 5, pp. 655–668. doi: 10.1080/00380768.2003.10410323. |
[45] | N’Da, D. H., Adou, Y. C. Y., N’Guessan, K. E., KONE, M., & Sagne, Y. C. (2015). Analysis of the floristic diversity of the marahoue national park, center-west of Côte d’Ivoire, Afrique Sci., vol. 04, no. 3, pp. 552–579. |
[46] | Njeru E. M., Avio L., Sbrana C., Turrini A., Bocci G., Bàrberi P., & Giovannetti M., (2014). First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth, Agron. Sustain. Dev., vol. 34, no. 4, pp. 841–848. doi: 10.1007/s13593-013-0197-y. |
[47] | Lohest, I. (2018). Influence of the specific composition of plant cover on the physical, chemical and biological parameters of the soil-plant system: study of arbuscular mycorrhizal fungi. Dissertation of Bioengineer of agronomic sciences, Catholic University of Louvain 103 p. |
[48] | Touré G. P. T., Nandjui J., Koné A. W., Kouadjo A. G. Z., Ebou A., Tiho S., & Zézé A. (2021). Diversity of arbuscular mycorrhizal fungi and interactions with the soil-litter system in a forest savanna ecotone of Côte d’Ivoire, Etude et Gestion des Sols, vol. 28, pp. 93-104 http://www.afes.fr/publications/revue-etude-etgestion-dessols/volume-28-numero-1/. |
[49] | Garbaye, J. (2013). Mycorrhizal symbiosis, an association between plants and fungi; Ed. Quae, Versaille, 1–285. |
[50] | Johnson J. M., Houngnandan P., Kane A., Sanon K., & Neyra M. (2013). Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa, Pedobiologia (Jena)., vol. 56, no. 3, pp. 121–128. doi: 10.1016/J.PEDOBI.2013.03.003. |
[51] | Koffi G. A., Dibi E. A. D. B., Anon H. A., Ndoye F., Bakhoum N., Diouf D., & Dabonné S. (2021). Diversity of Arbuscular Mycorrhizal Fungi Associated with Maize and Peanut Crop in N orthern Côte d ’ Ivoire, Int. J. Biosci., vol. 18, no. 3, pp. 240–250. doi:http://dx.doi.org/10.12692/ijb/18.3.240-250. |
[52] | Singh R. S. R., & Adholeya, A. (2013). Diversity of AM (Arbuscular mycorrhizal) Fungi in Wheat Agro-climatic Regions of India, Virol. Mycol., vol. 02, no. 02. doi: 10.4172/2161-0517.1000116. |
[53] | Barnes, C. J., Maldonado, C., Frøslev, T. G., Antonelli, A., & Rønsted, N. (2016) 'Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes, Front. Microbiol., vol. 7, p. 1377. doi: 10.3389/FMICB.2016.01377/BIBTEX. |
[54] | Soka, G. E., & Ritchie, M. E. (2018). Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape, Tanzania, Appl. Soil Ecol., vol. 125, pp. 222–232. doi: 10.1016/J.APSOIL.2018.01.013. |
[55] | Brito, I., Goss, M. J., de Carvalho, M., Chatagnier, O. & van Tuinen, D. (2012). Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions, Soil Tillage Res., vol. 121, pp. 63–67. doi: 10.1016/j.still.2012.01.012. |
[56] | Diédhiou A., Selosse M. A., Galiana A., Diabaté M., Dreyfus B., BÂ A., DE Faria S., & Béna G. (2010). Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings, Environ. Microbiol., vol. 12, no. 8, pp. 2219–2232. doi: 10.1111/J.1462-2920.2010.02183.X. |
[57] | Bennett A., Daniell T., Öpik M., Davison J., Moora M., Zobel M., Selosse M. A., & Evans D. (2013). Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages, PLoS One, vol. 8, no. 12. doi: 10.1371/journal.pone.0083241. |
APA Style
Droh Germain, Djezou Kouadio Meliton, Kouassi Koffi Brice Aymar, Kouassi Abou Bakari, Tiecoura Kouakou. (2022). Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d'Ivoire. American Journal of Agriculture and Forestry, 10(5), 170-180. https://doi.org/10.11648/j.ajaf.20221005.14
ACS Style
Droh Germain; Djezou Kouadio Meliton; Kouassi Koffi Brice Aymar; Kouassi Abou Bakari; Tiecoura Kouakou. Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d'Ivoire. Am. J. Agric. For. 2022, 10(5), 170-180. doi: 10.11648/j.ajaf.20221005.14
AMA Style
Droh Germain, Djezou Kouadio Meliton, Kouassi Koffi Brice Aymar, Kouassi Abou Bakari, Tiecoura Kouakou. Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d'Ivoire. Am J Agric For. 2022;10(5):170-180. doi: 10.11648/j.ajaf.20221005.14
@article{10.11648/j.ajaf.20221005.14, author = {Droh Germain and Djezou Kouadio Meliton and Kouassi Koffi Brice Aymar and Kouassi Abou Bakari and Tiecoura Kouakou}, title = {Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d'Ivoire}, journal = {American Journal of Agriculture and Forestry}, volume = {10}, number = {5}, pages = {170-180}, doi = {10.11648/j.ajaf.20221005.14}, url = {https://doi.org/10.11648/j.ajaf.20221005.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20221005.14}, abstract = {Maize cultivation plays an important socio-economic role in Côte d’Ivoire. It is the staple food of many Ivorian populations. The national production, from around 661,285 tonnes in 2013, increased to 1,025,000 tonnes in 2017. However, maize cultivation suffers from several problems, including the decline in soil fertility. To overcome these constraints, the use of arbuscular mycorrhizal fungi (AMF) could be useful. These fungi improve water and mineral nutrition as well as plants’ resistance to biotic and abiotic stresses. Before any breeding program, it is necessary to carry out a study of the diversity of AMF and their identification. Soil samples were collected from 20 localities in three regions of Côte d'Ivoire for the isolation of mycorrhizal fungal spores. Spores densities in 100 g of soil were respectively high (138.66 to 398 spores) in Bouaflé (Marahoué) and low (65.66 to 211 spores) in the soil samples from Bouaké (Gbêkê) and Ferké (Tchologo). Yellowish spores were the most abundant (65.37%). The same is true for spores of 90 μm diameter (62.72%). On the basis of the morphometric characteristics of the spores, 17 genres of AMF belonging to 13 families were identified in all the analyzed corn rhizospheres. However, the family of Glomeraceae represented by the genres Glomus, Funneliformis, Septoglomus, and Rhizophagus as well as the families of Acaulosporaceae and Gigasporaceae represented, respectively, by the genres Acaulospora and Gigaspora are the most abundant. These data allow the identification of the types of AMF and their optimum densities to be used for soil amendment in order to improve corn crop yields.}, year = {2022} }
TY - JOUR T1 - Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d'Ivoire AU - Droh Germain AU - Djezou Kouadio Meliton AU - Kouassi Koffi Brice Aymar AU - Kouassi Abou Bakari AU - Tiecoura Kouakou Y1 - 2022/09/19 PY - 2022 N1 - https://doi.org/10.11648/j.ajaf.20221005.14 DO - 10.11648/j.ajaf.20221005.14 T2 - American Journal of Agriculture and Forestry JF - American Journal of Agriculture and Forestry JO - American Journal of Agriculture and Forestry SP - 170 EP - 180 PB - Science Publishing Group SN - 2330-8591 UR - https://doi.org/10.11648/j.ajaf.20221005.14 AB - Maize cultivation plays an important socio-economic role in Côte d’Ivoire. It is the staple food of many Ivorian populations. The national production, from around 661,285 tonnes in 2013, increased to 1,025,000 tonnes in 2017. However, maize cultivation suffers from several problems, including the decline in soil fertility. To overcome these constraints, the use of arbuscular mycorrhizal fungi (AMF) could be useful. These fungi improve water and mineral nutrition as well as plants’ resistance to biotic and abiotic stresses. Before any breeding program, it is necessary to carry out a study of the diversity of AMF and their identification. Soil samples were collected from 20 localities in three regions of Côte d'Ivoire for the isolation of mycorrhizal fungal spores. Spores densities in 100 g of soil were respectively high (138.66 to 398 spores) in Bouaflé (Marahoué) and low (65.66 to 211 spores) in the soil samples from Bouaké (Gbêkê) and Ferké (Tchologo). Yellowish spores were the most abundant (65.37%). The same is true for spores of 90 μm diameter (62.72%). On the basis of the morphometric characteristics of the spores, 17 genres of AMF belonging to 13 families were identified in all the analyzed corn rhizospheres. However, the family of Glomeraceae represented by the genres Glomus, Funneliformis, Septoglomus, and Rhizophagus as well as the families of Acaulosporaceae and Gigasporaceae represented, respectively, by the genres Acaulospora and Gigaspora are the most abundant. These data allow the identification of the types of AMF and their optimum densities to be used for soil amendment in order to improve corn crop yields. VL - 10 IS - 5 ER -