| Peer-Reviewed

Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress

Received: 1 August 2022    Accepted: 29 August 2022    Published: 19 September 2022
Views:       Downloads:
Abstract

The recent dry years in Europe have illustrated the urgent need to secure agricultural yields. In order to achieve good plant growth without overusing resources such as water or fertilizer, the approach to the improvement of the soil could be a good alternative. Winter wheat is the most common cultivated crop in northern Germany. For this reason, a new organic soil amendment based on tree compartments and one with polymers for water retention were tested for their effectiveness in reducing effects of drought stress during three vegetation periods (2016-2018). It was examined whether their use can reduce or substitute irrigation and leads to better yields. The experiments were carried out in controlled nursery conditions with 8 replicates and under two irrigation regimes, well-watered with 64 l/m² in 4 month and controlled water restriction (9,6 l/m² in 4 month) during vegetative growth. Biometric plant parameters such as the SPAD (single-photon avalanche diode) value, plant height, over- and underground biomass and grain yield were used to compare the variants. Initially, both components were tested separately to be used in combination in the second and third year. When both amendments were used, results showed same plant heights, 10% more biomass and 25% more yield by water deficit compared to treatments without additives. The organic component promoted the chlorophyll value from 35 to 45. The experiments showed that this both soil amendments can lead to a grain yield of 70% compared to irrigated variants and to good wheat growth during drought.

Published in American Journal of Agriculture and Forestry (Volume 10, Issue 5)
DOI 10.11648/j.ajaf.20221005.15
Page(s) 181-198
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Soil Amelioration, Pot Experiment, Irrigation, Soil Additives, Food Security

References
[1] Klingholz, R. Bevölkerungswachstum: Bildung ist die Lösung. Biol. Unserer Zeit 2018, 48, 36–44, doi: 10.1002/biuz.201810638.
[2] Badenschier, F.; Gürke, B. Nicht genug Getreide für alle - Klimawandel lässt Menschen hungern, 2013.
[3] Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87, doi: 10.1038/nature16467.
[4] Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: a review. Agronomy for Sustainable Development 2015, 35, 401–442, doi: 10.1007/s13593-015-0283-4.
[5] Sprengelmeyer, L. Stand: 25.06.2019 11:15 Uhr - DIE REPORTAGE Wo der Klimawandel Deutschlands Böden austrocknet, 2019.
[6] Namirembe, S.; Brook, R. M.; Ong, C. K. Manipulating phenology and water relations in Senna spectabilis in a water limited environment in Kenya. Agroforestry Systems 2009, 75, 197–210, doi: 10.1007/s10457-008-9169-7.
[7] Fahad, S.; Bajwa, A. A.; Nazir, U.; Anjum, S. A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, doi: 10.3389/fpls.2017.01147.
[8] Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212, doi: 10.1051/agro:2008021.
[9] Schildbach, R. Getreide und Braugetreide - weltweit. Arten, Sorten, Anbau, Züchtung und Verarbeitung in der Landwirtschaft, Lebensmittel-, Brau- und Getränkeindustrie, 1. Aufl.; VLB: Berlin, 2013, ISBN 9783921690758.
[10] Ozturk, A.; Aydin, F. Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. Journal of Agronomy and Crop Science 2004, 190, 93–99, doi: 10.1046/j.1439-037X.2003.00080.x.
[11] Flexas, J.; Bota, J.; Loreto, F.; Cornic, G.; Sharkey, T. D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biology 2004, 6, 269–279, doi: 10.1055/s-2004-820867.
[12] Rucker, K. S.; Kvien, C. K.; Holbrook, C. C.; Hook, J. E. Identification of Peanut Genotypes with Improved Drought Avoidance Traits 1. Peanut Science 1995, 22, 14–18, doi: 10.3146/pnut.22.1.0003.
[13] Blum, A.; Johnson, J. W. Transfer of water from roots into dry soil and the effect on wheat water relations and growth. Plant and Soil 1992, 145, 141–149, doi: 10.1007/BF00009550.
[14] Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech Journal of Food Sciences 2011, 29, 117–128, doi: 10.17221/227/2010-CJFS.
[15] Cui, Y.; Tian, Z.; Zhang, X.; Muhammad, A.; Han, H.; Jiang, D.; Cao, W.; Dai, T. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 2015, 37, 196–206, doi: 10.1007/s11738-015-1944-2.
[16] Baher, Z. F.; Mirza, M.; Ghorbanli, M.; Bagher Rezaii, M. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal 2002, 17, 275–277, doi: 10.1002/ffj.1097.
[17] Colom, M. R.; Vazzana, C. Drought stress effects on three cultivars of Eragrostis curvula: photosynthesis and water relations. Plant Growth Regulation 2001, 34, 195–202, doi: 10.1023/A:1013392421117.
[18] Weigel, H.-J.; Manderscheid, R. Temperaturen und Niederschläge verändern sich: Wie wirkt dies auf die Landwirtschaft und welche Anpassungsmöglichkeiten bestehen?; sozio-ökonomische Aspekte: Gewinner und Verlierer, o. J. https://www.klima-warnsignale.uni-hamburg.de/wp-content/uploads/2014/05/weigel_manderscheid.pdf (accessed on 7 January 2020).
[19] Rashtbari, M.; Alikhani, H. A.; Ghorchiani, M. Effect of vermicompost and municipal solid waste compost on growth and yield of canola under drought stress conditions. International Journal of Agriculture: Research and Review 2012, 2, 395–402.
[20] Fereres, E.; Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159, doi: 10.1093/jxb/erl165.
[21] Handbuch der Bodenkunde; Blume, H.-P.; Stahr, K.; Fischer, W.; Guggenberger, G.; Horn, R.; Frede, H.-G.; Felix-Henningsen, P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014, ISBN 9783527678495.
[22] Aravind, K. R.; Raja, P.; Pérez-Ruiz, M. Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research 2017, 15, e02R01, doi: 10.5424/sjar/2017151-9573.
[23] Voutos, Y.; Mylonas, P.; Katheniotis, J.; Sofou, A. A Survey on Intelligent Agricultural Information Handling Methodologies. Sustainability 2019, 11, 3278, doi: 10.3390/su11123278.
[24] Redwitz, C. v.; Glemnitz, M.; Hoffmann, J.; Brose, R.; Verch, G.; Barkusky, D.; Saure, C.; Berger, G.; Bellingrath-Kimura, S. Microsegregation in Maize Cropping—a Chance to Improve Farmland Biodiversity. Gesunde Pflanzen 2019, 71, 87–102, doi: 10.1007/s10343-019-00457-7.
[25] Lassoued, R.; Macall, D. M.; Hesseln, H.; Phillips, P. W. B.; Smyth, S. J. Benefits of genome-edited crops: expert opinion. Transgenic Res. 2019, 28, 247–256, doi: 10.1007/s11248-019-00118-5.
[26] Deng, X.; Shan, L.; Inanaga, S.; Ali, M. E. Highly efficient use of limited water in wheat production of semiarid area*. Progress in Natural Science 2003, 13, 881–888, doi: 10.1080/10020070312331344590.
[27] Kumar, A. Characteristics of Various Soil Amendments. In Amelioration Technology for Soil Sustainability; Wang, Y., Rathoure, A. K., Eds.; IGI Global, 2019; pp 1–12, ISBN 9781522579403.
[28] Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln. Bundesgesetzblatt, 2012; S. 2482 (Nr. 58)).
[29] Abbas, Q.; Liu, G.; Yousaf, B.; Ali, M. U.; Ullah, H.; Mujtaba Munir, M. A.; Ahmed, R.; Rehman, A. Biochar-assisted transformation of engineered-cerium oxide nanoparticles: Effect on wheat growth, photosynthetic traits and cerium accumulation. Ecotoxicol. Environ. Saf. 2020, 187, 109845, doi: 10.1016/j.ecoenv.2019.109845.
[30] Schneider, A.; Hirsch, F.; Bonhage, A.; Raab, A.; Raab, T. The soil moisture regime of charcoal-enriched land use legacy sites. Geoderma 2020, 366, 114241, doi: 10.1016/j.geoderma.2020.114241.
[31] Barral Silva, M. T.; Silva Hermo, B.; García-Rodeja, E.; Vázquez Freire, N. Reutilization of granite powder as an amendment and fertilizer for acid soils. Chemosphere 2005, 61, 993–1002, doi: 10.1016/j.chemosphere.2005.03.010.
[32] J., J.; A. Y., P.; I., R.; A., W.; W., S. Moisture and Nutrient Storage Capacity of Calcined Expanded Shale. In Principles, Application and Assessment in Soil Science; Ozkaraova Gungor, B. E., Ed.; InTech, 2011, ISBN 978-953-307-740-6.
[33] Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000, ISBN 3527306730.
[34] Saletnik, B.; Zagula, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies 2018, 11, doi: 10.3390/en11102535.
[35] Spaccini, R.; Cozzolino, V.; Di Meo, V.; Savy, D.; Drosos, M.; Piccolo, A. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci. Total Environ. 2019, 646, 792–800, doi: 10.1016/j.scitotenv.2018.07.334.
[36] Akhzari, D.; Pessarakli, M. Effects of vermicompost and urea fertilizers on qualitative and quantitative characteristics of Vetiveria zizanioides stapf. grown under drought stress conditions. Journal of Plant Nutrition 2017, 40, 2063–2075, doi: 10.1080/01904167.2017.1346126.
[37] Bhardwaj, A. K.; Shainberg, I.; Goldstein, D.; Warrington, D. N.; J. Levy, G. Water Retention and Hydraulic Conductivity of Cross-Linked Polyacrylamides in Sandy Soils. Soil Sci. Soc. Am. J. 2007, 71, 406–412, doi: 10.2136/sssaj2006.0138.
[38] Wolter, M.; Wiesche, C. i. d.; Zadrazil, F.; Hey, S.; Haselbach, J.; Schnug, E. Biologische Abbaubarkeit synthetischer superabsorbierender Bodenhilfsstoffe. Landbauforschung Völkenrode 2002, 52, 43–52.
[39] Baasiri, M.; Ryan, J.; Mucheik, M.; Harik, S. N. Soil application of a hydrophilic conditioner in relation to moisture, irrigation frequency and crop growth. Communications in Soil Science and Plant Analysis 1986, 17, 573–589, doi: 10.1080/00103628609367736.
[40] Banedjschafie, S.; Herzog, H. Wirkungen eines polymeren Bodenverbesserers auf die Ertragsbildung von Hirse unter ariden Bedingungen. Journal of Agriculture and Rural Development in the Tropics and Subtropics 2006, 55–66.
[41] Li, Y.; Shi, H.; Zhang, H.; Chen, S. Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer. PeerJ 2019, 7, e6073, doi: 10.7717/peerj.6073.
[42] Azizi, B. Sustainability of Soil Moisture and Reduce Fertilizer Soaking Using Nature-Friendly Hydrogels to Improve and Promote Cultivating. Amazonia Investiga 2018, 7, 243–252.
[43] Farrell, C.; Ang, X. Q.; Rayner, J. P. Water-retention additives increase plant available water in green roof substrates. Ecological Engineering 2013, 52, 112–118, doi: 10.1016/j.ecoleng.2012.12.098.
[44] Geesing, D.; Schmidhalter, U. Influence of sodium polyacrylate on the water-holding capacity of three different soils and effects on growth of wheat. soil use manage 2004, 20, 207–209, doi: 10.1111/j.1475-2743.2004.tb00359.x.
[45] Barvenik, F. W. Polyacrylamide characteristics related to soil applications. Soil Science 1994, 158, 235–243, doi: 10.1097/00010694-199410000-00002.
[46] Deutscher Wetterdienst. Deutschlandwetter im Jahr 2018: 2018 – ein außergewöhnliches Wetterjahr mit vielen Rekorden. https://www.dwd.de/DE/presse/pressemitteilungen/DE/2018/20181228_deutschlandwetter_jahr2018_news.html (accessed on 7 January 2020).
[47] Jacobs, S.; Schäfer, D. Wärmster Sommer seit Beginn der Aufzeichnungen: Der Sommer geht zu Ende – in Berlin und Brandenburg war es so heiß wie noch nie. Für die kommende Woche erwartet der Wetterdienst 26 Grad, heute könnte es noch Unwetter geben. Potsdamer Neueste Nachrichten [Online], September 1, 2019. https://www.pnn.de/brandenburg/brandenburg-waermster-sommer-seit-beginn-der-aufzeichnungen/24965808.html.
[48] Deutscher Wetterdienst. Klima-Pressekonferenz des Deutschen Wetterdienstes (DWD), 2019.
[49] Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manage. 2019, 232, 8–21, doi: 10.1016/j.jenvman.2018.10.117.
[50] Thai, T. H.; Bellingrath-Kimura, S. D.; Hoffmann, C.; Barkusky, D. Effect of long-term fertiliser regimes and weather on spring barley yields in sandy soil in North-East Germany. Archives of Agronomy and Soil Science 2019, 28, 1–15, doi: 10.1080/03650340.2019.1697436.
[51] Kammann, C. I.; Linsel, S.; Gößling, J. W.; Koyro, H.-W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 2011, 345, 195–210, doi: 10.1007/s11104-011-0771-5.
[52] Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research 2014, 144, 184–194, doi: 10.1016/j.still.2014.07.016.
[53] ProPlanta. Winterweizen dominiert Getreidebau in Brandenburg. https://www.proplanta.de/agrar-nachrichten/pflanze/winterweizen-dominiert-getreidebau-in-brandenburg_article1526018200.html (accessed on 31 March 2020).
[54] Abid, M.; Tian, Z.; Ata-Ul-Karim, S. T.; Cui, Y.; Liu, Y.; Zahoor, R.; Jiang, D.; Dai, T. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods. Front. Plant Sci. 2016, 7, 981, doi: 10.3389/fpls.2016.00981.
[55] Münzel, S.; Blumenstein, O. Ökologische und nachhaltige Ergänzungsstoffe für Extremstandorte. Forum der Geoökologie 2012, 23, 48–51.
[56] Kariuki, L. W.; Masinde, P.; Githiri, S.; Onyango, A. N. Effect of water stress on growth of three linseed (Linum usitatissimum L.) varieties. Springerplus 2016, 5, doi: 10.1186/s40064-016-2348-5.
[57] InterEnviroCon GmbH. Eigenschaften. https://bodenbalsam.de/EIGENSCHAFTEN/ (accessed on 16 January 2020).
[58] Bundessortenamt. Beschreibende Sortenliste. Getreide, Mais Öl- und Faserpflanzen Le-guminosen Rüben Zwischenfrüchte. Online verfügbar, zuletzt geprüft am 16.09.2016., 2013. www.bundessorten-amt.de/internet30/fileadmin/Files/PDF/bsl_getreide_2013.pdf.
[59] Climate-Data.org. Klima Potsdam. https://de.climate-data.org/europa/deutschland/brandenburg/potsdam-6406/#climate-Table.
[60] Konica Minolta. Spezifikation Chlorophyll Meter SPAD-502Plus. https://www5.konicaminolta.eu/en/measuring-instruments/products/colour-measurement/chlorophyll-meter/spad-502plus/specifications.html (accessed on 4 February 2020).
[61] Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosyn. Res. 2007, 91, 37–46, doi: 10.1007/s11120-006-9077-5.
[62] McAndrew, D. W.; Demars, D. J. E.; Biederbeck, V. O.; Campbell, C. A. Assessment of agrispon, a microbial soil supplement, on cereal production. Canadian Journal of Plant Science 1984, 64, 607–615, doi: 10.4141/cjps84-085.
[63] Akhzari, D.; Aghbash, F. G. Effect of Salinity and Drought Stress on the Seedling Growth and Physiological Traits of Vetiver Grass (Vetiveria zizanioides stapf.). Ecopersia 2013, 1, 339–352.
[64] Asseng, S.; Ritchie, J. T.; Smucker, A. J. M.; Robertson, M. J. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil 1998, 201, 265–273, doi: 10.1023/A:1004317523264.
[65] Flexas, J.; Bota, J.; Cifre, J.; Escalona, J. M.; Galmes, J.; Gulias, J.; Lefi, E. K.; Martinez-Canellas, S. F.; Moreno, M. T.; Ribas-Carbo, M.; et al. Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Annals of Applied Biology 2004, 144, 273–283, doi: 10.1111/j.1744-7348.2004.tb00343.x.
[66] Yara. Nährstoffversorgung in den Wachstumsstadien bei Weizen. https://www.yara.de/pflanzenernaehrung/weizen/naehrstoffversorgung-wachstumsstadien/ (accessed on 25 April 2020).
[67] Gong, J. R.; Zhao, A. F.; Huang, Y. M.; Zhang, X. S.; Zhang, C. L. Water relations, gas exchange, photochemical efficiency, and peroxidative stress of four plant species in the Heihe drainage basin of northern China. Photosynthetica 2006, 44, 355–364, doi: 10.1007/s11099-006-0036-3.
[68] Paul, L. C.; Metzger, J. D. Impact of Vermicompost on VegeTable Transplant Quality. Hortscience 2005, 40, 2020–2023, doi: 10.21273/HORTSCI.40.7.2020.
[69] Bachman, G. R.; Metzger, J. D. Physical and Chemical Characteristics of a Commercial Potting Substrate Amended with Vermicompost Produced from Two Different Manure Sources. Horttechnology 2007, 17, 336–340, doi: 10.21273/HORTTECH.17.3.336.
[70] Berova, M.; Karanatsidis, G. Influence of bio-fertilizer, produced by Lumbricus rubelluson growth, leaf gasexchange and photosynthetic content of pepper plants (Capsicum annuum L.). Acta Horticulturae 2009, 447–452, doi: 10.17660/ActaHortic.2009.830.63.
[71] Ali, M.; Griffiths, A. J.; Williams, K. P.; Jones, D. L. Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. European Journal of Soil Biology 2007, 43, S316-S319, doi: 10.1016/j.ejsobi.2007.08.045.
[72] Lazcano, C.; Dominguez, J. Effects of vermicompost as a potting amendment of two commercially-grown ornamental plant species. Spanish Journal of Agricultural Research 2010, 8, 1260, doi: 10.5424/sjar/2010084-1412.
[73] Kumar, A.; Sharma, S.; Mishra, S. Application of farmyard manure and vermi-compost on vegetative and generative characteristics of Jatropha curcas. Journal of Phytology 2009, 1, 206–212.
[74] Joshi, R. Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: a field study. International Journal of Recycling of Organic Waste in Agriculture 2013, 2.
[75] Joshi, R.; Singh, J.; Vig, A. P. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology 2015, 14, 137–159, doi: 10.1007/s11157-014-9347-1.
[76] Weyrauch, S. Stroh- mehr als nur Einstreu: Stroh liefert Energie, verbessert die Verdauung und enthält wenig Eiweiß (accessed on 24 April 2020).
[77] Guddat, C.; Degner, J.; Marschall, K.; Zorn, W. Leitlinie zur effizienten und umweltvertr¨aglichen Erzeugung von Winterweizen. http://www.tll.de/www/daten/
Cite This Article
  • APA Style

    Sandra Muenzel. (2022). Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress. American Journal of Agriculture and Forestry, 10(5), 181-198. https://doi.org/10.11648/j.ajaf.20221005.15

    Copy | Download

    ACS Style

    Sandra Muenzel. Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress. Am. J. Agric. For. 2022, 10(5), 181-198. doi: 10.11648/j.ajaf.20221005.15

    Copy | Download

    AMA Style

    Sandra Muenzel. Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress. Am J Agric For. 2022;10(5):181-198. doi: 10.11648/j.ajaf.20221005.15

    Copy | Download

  • @article{10.11648/j.ajaf.20221005.15,
      author = {Sandra Muenzel},
      title = {Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress},
      journal = {American Journal of Agriculture and Forestry},
      volume = {10},
      number = {5},
      pages = {181-198},
      doi = {10.11648/j.ajaf.20221005.15},
      url = {https://doi.org/10.11648/j.ajaf.20221005.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20221005.15},
      abstract = {The recent dry years in Europe have illustrated the urgent need to secure agricultural yields. In order to achieve good plant growth without overusing resources such as water or fertilizer, the approach to the improvement of the soil could be a good alternative. Winter wheat is the most common cultivated crop in northern Germany. For this reason, a new organic soil amendment based on tree compartments and one with polymers for water retention were tested for their effectiveness in reducing effects of drought stress during three vegetation periods (2016-2018). It was examined whether their use can reduce or substitute irrigation and leads to better yields. The experiments were carried out in controlled nursery conditions with 8 replicates and under two irrigation regimes, well-watered with 64 l/m² in 4 month and controlled water restriction (9,6 l/m² in 4 month) during vegetative growth. Biometric plant parameters such as the SPAD (single-photon avalanche diode) value, plant height, over- and underground biomass and grain yield were used to compare the variants. Initially, both components were tested separately to be used in combination in the second and third year. When both amendments were used, results showed same plant heights, 10% more biomass and 25% more yield by water deficit compared to treatments without additives. The organic component promoted the chlorophyll value from 35 to 45. The experiments showed that this both soil amendments can lead to a grain yield of 70% compared to irrigated variants and to good wheat growth during drought.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Organic and Hydrogel Soil Amendments for Winter Wheat Adaption to Drought Stress
    AU  - Sandra Muenzel
    Y1  - 2022/09/19
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ajaf.20221005.15
    DO  - 10.11648/j.ajaf.20221005.15
    T2  - American Journal of Agriculture and Forestry
    JF  - American Journal of Agriculture and Forestry
    JO  - American Journal of Agriculture and Forestry
    SP  - 181
    EP  - 198
    PB  - Science Publishing Group
    SN  - 2330-8591
    UR  - https://doi.org/10.11648/j.ajaf.20221005.15
    AB  - The recent dry years in Europe have illustrated the urgent need to secure agricultural yields. In order to achieve good plant growth without overusing resources such as water or fertilizer, the approach to the improvement of the soil could be a good alternative. Winter wheat is the most common cultivated crop in northern Germany. For this reason, a new organic soil amendment based on tree compartments and one with polymers for water retention were tested for their effectiveness in reducing effects of drought stress during three vegetation periods (2016-2018). It was examined whether their use can reduce or substitute irrigation and leads to better yields. The experiments were carried out in controlled nursery conditions with 8 replicates and under two irrigation regimes, well-watered with 64 l/m² in 4 month and controlled water restriction (9,6 l/m² in 4 month) during vegetative growth. Biometric plant parameters such as the SPAD (single-photon avalanche diode) value, plant height, over- and underground biomass and grain yield were used to compare the variants. Initially, both components were tested separately to be used in combination in the second and third year. When both amendments were used, results showed same plant heights, 10% more biomass and 25% more yield by water deficit compared to treatments without additives. The organic component promoted the chlorophyll value from 35 to 45. The experiments showed that this both soil amendments can lead to a grain yield of 70% compared to irrigated variants and to good wheat growth during drought.
    VL  - 10
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Environmental Science and Geography, University of Potsdam, Potsdam, Germany

  • Sections