| Peer-Reviewed

Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad

Received: 23 April 2023     Accepted: 12 May 2023     Published: 6 July 2023
Views:       Downloads:
Abstract

Chad is one of the most vulnerable countries affected by climate changes. The combination of poverty, demographic pressure and overexploitation of natural resources coupled with the risks of drought and flooding, expose the country to numerous humanitarian emergencies. The objective of this study is to understand the role of agricultural production systems in building resilience to climate change in the Fitri watershed in Chad. The Faidherbia albida agroforestry system increases water infiltration and soil fertility rates and conserves biodiversity by limiting the consequences of climate change. Mixed cropping significantly reduces the risk of crop failure due to climatic variations. The survey was carried out on a sample of 178 households divided into 49, 57 and 72 households, respectively in the Mochi, Zegue and Yao areas. The floristic inventory was carried out using 50m square plots. A total of 165 plots were determined in the different farming systems. The area under each agricultural crop varies from one village to another. The ecologically important species are Faidherbia albida, Balanites aegyptiaca, Prosopis juliflora and Mangifera indica. Regardless of the area studied, the Fabaceae, Balanitaceae, Mimosaceae, Arecaceae, Rhamnaceae, Capparaceae, Meliaceae and Asclepiadaceae families have an IVF of 10 or more. The high density of woody plants in the agrosystems shows that the individuals are full of seed potential that could contribute to their renewal. The height dominance of the trees implies their carbon sequestration capacity since the sequestered carbon accumulates in the above-ground and below-ground biomass.

Published in American Journal of Agriculture and Forestry (Volume 11, Issue 4)
DOI 10.11648/j.ajaf.20231104.11
Page(s) 119-127
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Agroforestry Systems, Resilience, Climate Change, Biological Diversity, Fitri, Chad

References
[1] CILSS, 2016. Lutte contre les changements climatiques, les réalisations du CILSS, cobb. S (1982). Social support health through the life course, 42p.
[2] Kiari Fougou H., 2014. Impacts des variations du niveau du lac Tchad sur les activités économiques des pêcheurs de la partie Nigérienne. Thèse de Doctorat de géographie, Université Abou-Moumoni, Niamey, Niger, 318p.
[3] Moupeng B., 2006. Le lac Fitri: dynamique du système hydrologique quaternaire et actuel (Sahel tchadien). Thèse de Doctorat, Université de la Provence, Avignon, 171p.
[4] Raimond C., Zakinet D., Mugele R., Kemsol N A., Mbagogo A., Yali-kunT., Brahim B. A., Madjigoto R., Schuster M., Sylvestre F., Deschamps P., 2017. Les nouveaux enjeux pour le lac Fitri, entre variabilité environnementale, croissance démographique et conflit d’usage. In: livre des résumés étendus du colloque International Recherche croisée sur les écosystèmes lacustres tchadiens, Ndjamena, Tchad, 25-27 avril 2017, 601p.
[5] Scheffers A. M., Scheffers S. R., Kelletat D. H., 2012. The coastline of the world with google Earth: undertaiding our environment Coastal Research Library 2, springer, Dordracht, 293p.
[6] Schuster M., 2002. Sédimentologie et paléontologie des séries à vertébrés du paléo lac Tchad depuis le Miocène supérieur. Thèse de Doctorat, Université Louis Pasteur de Strasbourg, 152p.
[7] Sandjong Sani R. C., Ntoupka M., Adamou I et Vroumsia T., 2013. Etude écologique du Parc National de Mozogo-Gokoro (Cameroun): prospection préliminaire de la flore ligneuse et du sol pour la conservation et son aménagement, In. I. Biol. Chem. Sc. 7 (6): 2434-2449.
[8] Marty., Zakinet D., Khamis D., Bernard C., 2012. Analyse de l’évolution du Fitri. Document principal. Republique du Tchad, programme d’hydraulique pastoral au Tchad central phase 2, Antea-Iram, 128p.
[9] Young A., 1989. Agroforestry for soil conservation. Wallingford, oxon, u. k: CAB. International., International Concil for Research in Agroforestry, 23-52.
[10] Mapongmetsem P. M., Nduryang J. B. N., Fawa G., Dona A., 2015. Contribution à la connaissance des produits forestiers non ligneux de la zone soudano-sahélienne du Cameroun. Kapseu C., Nzié W., Nso E., Silechi J., Ngomo H., (Eds). Biodiversité et changements globaux: valorisation des effluents des industries, des résidus agro-pastoraux et forestiers. Actes du Colloque International du 21 au 23 juillet 2015 à Ngaoundéré, 139-147.
[11] Nair P. K. R. & Garrity D., 2012. Agroforestry; the future of global land use, advance in agroforestry springer. Dordrecht, 541p.
[12] Mapongmetsem P. M., Dona A., 2010. Land use systems and biodiversity conservation east Tandjile, Chad. Scripta Bot. Belg, 46: 285.
[13] Dona A., Mapongmetsem P. M., Dongock N. D., Pamboudem N. A., Fawa G. and Aoudou D. S., 2016. Phytodievrsity and carbon stock in Sudanian savannahs zone of Tandjile-East of Chad, International Journal of Applied Research, 2 (9): 455-460.
[14] Torquebiau E., Mary F & Sibelet N., 2002. Les associations agroforestières et leurs multiples enjeux. Bois et forêts des Tropiques, 271: 23-34.
[15] Garba I., Touré I., Ickowicz A., 2012. « Evolution historique de la pluviosité ». In système d’information sur le pastoralisme au Sahel. Atlas des évolutions des systèmes pastoraux au Sahel 1970-2012. Fao et Cirad, ed: 8-11.
[16] Woodfine A., 2008. L’adaptation au changement climatique et l’atténuation de ses effets en Afrique Subsaharienne au moyen des pratiques de gestion durable des terres, Terrafrica, 90p.
[17] Kemsol Nagorngar A., 2018. Dynamique des cultures de décrue dans les zones lacustres Soudano-Sahéliennes de 1985 à 2015: cas des lacs Fitri et Iro au Tchad. Thèse de doctorat, Université Felix-Houphouët-Boigny d’Abidjan-Cocody, 178p.
[18] Higgings I. S., Shackleton M. C., Robinson R. E., 1999. Changes in woody community structure and composition under contrasting lean use systems in semi-arid Savanna. South Afrique, Journal of biogeography, 26: 2019 – 629.
[19] RGPH2, 2009. Deuxième recensement général de la population et de l’habitat. Ministère du plan, Tchad, 163p.
[20] P-SIDRAT, 2013. Schéma régional d’aménagement du territoire (SRAT) du Batha. Rapport final, consortium Agrer-Image, Matuh, 49p.
[21] Ngom D., 2013. Diversité végétale et quantification des services écosystémiques de biosphère du Ferlo (Nord-Sénégal). Thèse, ED-SEV/UCAD, Dakar, 167p.
[22] Yédomonhan H., Hounadagba C. J., Akoéginou A., Vander Maesen L. J. G., 2008. Structure et diversité floristique de la vegetation des inselbergs du secteur méridional du centre-Bénin. Syst. Geogr. Pl, 78: 111- 125.
[23] Felfili J. M., Silva Junior M. C., Sevilha A. C., Fagg C. W., Walter B. M. T., Nogueira P. E & Rezende A. G., 2004. Diversity floristics and structural patterns of cerrado vegetation in Central Brazil, Plant Ecology, 175: 37 – 48.
[24] Neelo J., Teketay D., Kashe K., Masamba W., 2015. Stand structure, diversity and regeneration statut of woody species in open and exclosed. Dry woodland sites around Malapo farming areas of the Okavango Delta, Northeastern Bostwana. Open Journal of Forestry, 5: 313 – 328.
[25] Nusbaumer L., Gautier L., Chatelain C&Spichiger R., 2005. Structure et composition floristique de la forêt classée du Scio (Côte d’Ivoire). Etude descriptive et comparative. Candollea, 60: 394-443.
[26] Gonmadje, C. F., Doumenge, C., McKey, D., Tchouto, M. G. P., Sunderland, T. C. H., Balinga, M. P. B., Sonké, B., 2011. Tree diversity and conservation value of the Ngovayang massif, Cameroon. Biodiversity and Conservation, 20: 2627-2648.
[27] Gonmadje, C. F., Doumenge, C., Sunderland, T. C. H., Balinga, M. P. B., Sonké, B., 2012. Analyse phytogéographique des forêts d’Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Plant Ecology and Evolution, 145 (2): 152-164.
[28] Kacholi D. S., 2014. Analysis of structure and Diversity of the Kilengwe Forest in the Morogoro Region, Tanzania International Journal of Biodiversity. Volume 2014, Article ID 516840, 8p.
[29] MBow C., Verstraete M and Neufeldth, 2014. Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan-Guinean ecosystems of southern Senegal, pp. 340-347.
[30] GIEC, 2007. Résumé à l’intention des décideurs. Changements climatiques 2007: Les éléments scientifiques. Contribution du Groupe de travail I au quatrième rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat, Solomon, S., D. QIN, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor et H. L. Miller (eds.). Cambridge University Press, Cambridge, UK et New York, NY, USA. 2007.
[31] GIEC, 2006. Guide pour l‟inventaire national des gaz à effet de serre agriculture, foresterie et autre usage des terres. Institute for Global Environnemental Strategies, Japon, 4: 46-52.
[32] Valentini G., 2007. Évaluation de la séquestration du carbone dans les plantations agroforestières et des jachères issues d’une agriculture migratoire dans les territoires autochtones de Talamanca au Costa Rica. Mémoire de MSC en Biologie végétale, Université de Laval Québec, Canada, 128p.
[33] Roupsard O., Ferhi A and Granier A., 2002. Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese West Africa, Functional Ecology, 13 (4): 460 – 472.
[34] Gassama –Dia Y. K., San’Ed and N’Doye M., 2003. Reproductive biology of Faidherbia albida (Del) A, Chev. Silva Fennica, 37: 429-436.
[35] Gonzalez P., Tucker C. J., 2012. Tree density and species decline in the African Sahel attributable to climate, Journal of Arid Environment, 78: 55-64.
[36] Cesse M., Bationo B. A., Traore S et Bourssim I. J., 2018. Perception d’espèces agroforestières et de leurs services écosystémiques par trois (3) groupes ethniques du bassin versant de BOURA, zone Soudanienne du Burkina-Faso. Bois et Forêts de Tropiques, 338: 29-42.
[37] Yameogo G., Yelemou B., Boussim I. J., Traoré D., 2013. Gestion du parc agroforestier du terroir de VIPALOGO (Burkina-Faso): contribution des ligneux à la satisfaction des besoins des populations. Int. J. Bio. Chem. Sci, 7 (3): 1087-1105.
[38] Biaou S. S. H., Natta A. K., Dicko A et Kouagou M’M., 2016. Typologies des systems agroforestiers et leurs impacts sur la satisfaction des besoins des populations rurales au Benin, 14p, web http://www.slire.net & htt://www.inrab.org
[39] Abourhamane H., Morou B., Rabiou H et Mahamane A., 2013. Caractéristiques floristiques, diversité et structure de la végétation ligneuse dans le Centre-Sud du Niger: cas du complexe des forêts de Dan Kada Dodo-Dan Gado. Int. J. Biol. Chem. Sci, 7 (3): 1048-1068.
[40] Kanohin F., Saley M. B & Savane L., 2009. European Journal of Scientific Research, 26: 209-222.
[41] Bambara D., Bilgo A., Lompo F., Hien V., 2011. Int. J. Biol. Chem. Sci., 5 (6): 2415 – 2433.
[42] Mamah M., Baye-Niwah C., Hamawa Y., Dangai Y., Oumarou Z., Abdoulaye H., Mal Ali, Fawa G. & Mapongmetsem P. M., 2019. Borassus aethiopum Mart. agroforestry parklands and climate change mitigation in Cameroon. International Journal of Agriculture and Environmental Research 5 (4): 436-455. www.ijaer. in
[43] Dangai Y., Hamawa Y., Tsobou R., H. Z. Oumaroua H. Z., Mapongmetsem P. M., 2021. Carbon stocks in Daniellia oliveri agroforestry parklands in the Sudano - sahelian zone of Cameroon. Environmental Challenges, 5: 1-8. Journal homepage: www.elsevier.com/locate/envc
[44] Marema T & Growley J., 2004. Impact des changements environnementaux sur la migration humaine, études de cas: Sénégal et Côte d’Ivoire, juin, UNESCO, 29 p.
[45] Salack S., Traoré B & Sarr B., 2006. Synthèse sur les collecte, la mise en forme et le stockage des données climatologiques des pays du CLSS et étude d’impacts des changements climatiques sur la production agricole au Sahel, Rapport de stage, Centre AGRHYMET, 95p.
[46] Smith Dumont E, Bonhomme S., Fergus S., 2015. Guide technique d’agroforesterie pour la selection et la gestion des arbres au NORD-KIVU. RDC, WAC. 130p.
[47] Bationo B. A., Kalinganiré A. et Bayala J., 2012. Potentialités des ligneux dans la pratique de l’agriculture de conservation dans les zones arides et semi-arides de l’Afrique de l’Ouest: Aperçu de quelques systèmes candidats. ICRAF Technical Manual no 17 Nairobi: World Agroforestry Centre, 12: 87-94.
[48] Alcade C. S., Achigan-Dako E. G., Orou G. G and Ahanchédé A., 2015. Farmer's knowledge and perception of diversified farming systems in Sub-Humid and Semi-Arid Areas in Benin, Sustainability, 7, 6573-6592.
[49] Sobola I., Aubricot O., Puschiasis O., Duplan T., Grimald J., Hugonnet M et Buchheit P., 2015b. Changement climatique et ressource en eau en Himalaya: enquête auprès des villageois dans quatre unités géographiques du bassin de la Koshi, Nepal. Revue de géographie Alpine, 103 (2), 1-25.
[50] Boureima M., Sissoko K., Zougmoré R., Dieye K., Amadou M., Moussa A. S., Foerch W., Garlick C., Ochieng S., Kristjanson P., Thornton P. K., 2011. Résultats des enquêtes de base des ménages du site de Kolle, Niger, 17p.
[51] Adamou C. A., Mana A., Missikpode R., Sinsin R., 2009. Cartographie et caractérisation floristique de la forêt marécageuse de LOKOLI (Benin), 14p.
[52] Wofo G., 2008. Les aires protégées de l’Extrême Nord du Cameroun entre politique et conservation et pratiques locales. Thèse de Doctorat en géographie Aménagement-Environnement, Université d’Orléans, 325p.
[53] Awono Mvondo J. P., Boukong A., Mainam F., Yombo G., Njokou Tchoutang G., Beyegue-Djonko H., Fertilisation des sols dans les monts Mandara à l’Extrême-Nord du Cameroun: du diagnostic aux recommandations. 8 p. ffhal-00142746f
[54] Asako Takimoto, Ramachandran Nair P. K., Vimala D. Nair, 2008. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems and Environment, 125: 159-166.
[55] Mama A., Sinsin B., Cannière C & Bogaert J., 2013. Anthropisation et dynamisme des paysages en zone Soudanienne au Nord du Bénin, in Tropicultura, 3: 78-88.
[56] Barmos S., Amani A., Soumana I., Ichaou A., Karim S & Mahamane A., 2019. Structure et diversité des parcs agroforestiers adjacents à la forêt protégée de Bahan Rafi, Niger-Afrique de l’Ouest. Afrique Science, 15 (2): 166-185, http://www.afriquescience.net
[57] Konan D., Bakayoko A., Trabi F. H., Bitignon B. G. A & Piba S. C., 2015. Dynamisme de la structure diamétrique du peuplement ligneux des différents biotopes de la forêt classée de Yapo-Abbé, Sud de la Côte d’Ivoire. Journal of Applied Biosciences, 94: 8869 – 8879.
[58] Gueulou N., Ouattara N. D., Konan D., Gnahore E., Missa K & Bakayako A., 2018. Diversité floristique et structurale de la forêt galerie du Bandama dans la Réserve Scientifique de Lamto en Côte d’Ivoire. Afrique SCIENCE, 14 (4): 439 -452.
[59] Traoré K., Ganry F., Olivier R., Gigou R., 2004. Litter production and soil fertility in a Vitellaria paradoxa parkland in a Catena in Southern Mali. Arid land Res. Manag, 18 (4): 359- 368.
[60] Palm C. A., Woomer P. L., Alegre J., Arevalo L., Castella C., Cordeiro D. G., Feigl B., Hairiah K., Kotto-Same J., Mendes A., Moukam A., Murdiyarso D., Njomgang R., Parton W. J., Ricse A., Rodrigue V., Sitompul S. M., Van Noordwij K. M., 2000. Carbon sequestration and trace gaz emissions in slash-and-burn and alternative land uses in the humid tropics. Final Report, Alternative to glash and Burn (ABS). Climate change working Group, phase III ICRAF, Nairobi, Kenya, 29 p.
[61] Peltier R., Njiti F. C., Ntoupka M., Manlay R., Henry M., Morillon V., 2007. Evaluation du stock de carbone et productivité en bois d’un parc à karité du Nord-Cameroun. Revue Bois des Tropiques, 294 (4): 39 – 50.
Cite This Article
  • APA Style

    Dona Adoum, Lamy Lamy Georges Maxime, Anguessin Benjamine, Fawa Guidawa, Mapongmetsem Pierre Marie. (2023). Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad. American Journal of Agriculture and Forestry, 11(4), 119-127. https://doi.org/10.11648/j.ajaf.20231104.11

    Copy | Download

    ACS Style

    Dona Adoum; Lamy Lamy Georges Maxime; Anguessin Benjamine; Fawa Guidawa; Mapongmetsem Pierre Marie. Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad. Am. J. Agric. For. 2023, 11(4), 119-127. doi: 10.11648/j.ajaf.20231104.11

    Copy | Download

    AMA Style

    Dona Adoum, Lamy Lamy Georges Maxime, Anguessin Benjamine, Fawa Guidawa, Mapongmetsem Pierre Marie. Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad. Am J Agric For. 2023;11(4):119-127. doi: 10.11648/j.ajaf.20231104.11

    Copy | Download

  • @article{10.11648/j.ajaf.20231104.11,
      author = {Dona Adoum and Lamy Lamy Georges Maxime and Anguessin Benjamine and Fawa Guidawa and Mapongmetsem Pierre Marie},
      title = {Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad},
      journal = {American Journal of Agriculture and Forestry},
      volume = {11},
      number = {4},
      pages = {119-127},
      doi = {10.11648/j.ajaf.20231104.11},
      url = {https://doi.org/10.11648/j.ajaf.20231104.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20231104.11},
      abstract = {Chad is one of the most vulnerable countries affected by climate changes. The combination of poverty, demographic pressure and overexploitation of natural resources coupled with the risks of drought and flooding, expose the country to numerous humanitarian emergencies. The objective of this study is to understand the role of agricultural production systems in building resilience to climate change in the Fitri watershed in Chad. The Faidherbia albida agroforestry system increases water infiltration and soil fertility rates and conserves biodiversity by limiting the consequences of climate change. Mixed cropping significantly reduces the risk of crop failure due to climatic variations. The survey was carried out on a sample of 178 households divided into 49, 57 and 72 households, respectively in the Mochi, Zegue and Yao areas. The floristic inventory was carried out using 50m square plots. A total of 165 plots were determined in the different farming systems. The area under each agricultural crop varies from one village to another. The ecologically important species are Faidherbia albida, Balanites aegyptiaca, Prosopis juliflora and Mangifera indica. Regardless of the area studied, the Fabaceae, Balanitaceae, Mimosaceae, Arecaceae, Rhamnaceae, Capparaceae, Meliaceae and Asclepiadaceae families have an IVF of 10 or more. The high density of woody plants in the agrosystems shows that the individuals are full of seed potential that could contribute to their renewal. The height dominance of the trees implies their carbon sequestration capacity since the sequestered carbon accumulates in the above-ground and below-ground biomass.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Agricultural Production Systems and Climate Change Ductility Enhancement in the Fitri Watershed in Chad
    AU  - Dona Adoum
    AU  - Lamy Lamy Georges Maxime
    AU  - Anguessin Benjamine
    AU  - Fawa Guidawa
    AU  - Mapongmetsem Pierre Marie
    Y1  - 2023/07/06
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajaf.20231104.11
    DO  - 10.11648/j.ajaf.20231104.11
    T2  - American Journal of Agriculture and Forestry
    JF  - American Journal of Agriculture and Forestry
    JO  - American Journal of Agriculture and Forestry
    SP  - 119
    EP  - 127
    PB  - Science Publishing Group
    SN  - 2330-8591
    UR  - https://doi.org/10.11648/j.ajaf.20231104.11
    AB  - Chad is one of the most vulnerable countries affected by climate changes. The combination of poverty, demographic pressure and overexploitation of natural resources coupled with the risks of drought and flooding, expose the country to numerous humanitarian emergencies. The objective of this study is to understand the role of agricultural production systems in building resilience to climate change in the Fitri watershed in Chad. The Faidherbia albida agroforestry system increases water infiltration and soil fertility rates and conserves biodiversity by limiting the consequences of climate change. Mixed cropping significantly reduces the risk of crop failure due to climatic variations. The survey was carried out on a sample of 178 households divided into 49, 57 and 72 households, respectively in the Mochi, Zegue and Yao areas. The floristic inventory was carried out using 50m square plots. A total of 165 plots were determined in the different farming systems. The area under each agricultural crop varies from one village to another. The ecologically important species are Faidherbia albida, Balanites aegyptiaca, Prosopis juliflora and Mangifera indica. Regardless of the area studied, the Fabaceae, Balanitaceae, Mimosaceae, Arecaceae, Rhamnaceae, Capparaceae, Meliaceae and Asclepiadaceae families have an IVF of 10 or more. The high density of woody plants in the agrosystems shows that the individuals are full of seed potential that could contribute to their renewal. The height dominance of the trees implies their carbon sequestration capacity since the sequestered carbon accumulates in the above-ground and below-ground biomass.
    VL  - 11
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Life Sciences and Earth, Faculty of Live Sciences, Earth and Territory planning, University of Sciences and Technology of Ati, Ati, Chad

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Environmental Sciences, The Higher National Polytechnic College, University of Maroua, Maroua, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Sections